某農(nóng)場(chǎng)給某種農(nóng)作物施肥量x(單位:噸)與其產(chǎn)量y(單位:噸)的統(tǒng)計(jì)數(shù)據(jù)如表:
施肥量x(噸) 
 產(chǎn)量y(噸) 2639 49 54 
由于表中的數(shù)據(jù),得到回歸直線方程為
y
=9.4x+
a
,當(dāng)施肥量x=6時(shí),該農(nóng)作物的預(yù)報(bào)產(chǎn)量是( 。
A、72.0B、67.7
C、65.5D、63.6
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點(diǎn),根據(jù)線性回歸直線過樣本中心點(diǎn),求出方程中的一個(gè)系數(shù),得到線性回歸方程,把自變量為6代入,預(yù)報(bào)出結(jié)果.
解答: 解:∵
.
x
=3.5,
.
y
=42,
∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,
回歸方程y=bx+a中b為9.4,
∴42=9.4×3.5+a,
a
=9.1,
∴線性回歸方程是
y
=9.4x+9.1,
∴廣告費(fèi)用為6萬元時(shí)銷售額為9.4×6+9.1=65.5(噸),
故選C.
點(diǎn)評(píng):本題考查線性回歸方程.考查預(yù)報(bào)變量的值,考查樣本中心點(diǎn)的應(yīng)用,本題是一個(gè)基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,5)與B(4,-7),在y軸上有一點(diǎn)p使得PA+PB的值為最小,則點(diǎn)p的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a1a4=10,則數(shù)列{lgan}的前4項(xiàng)和等于( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為單調(diào)遞增函數(shù),且f(2)=0,則不等式
f(-x)-f(x)
2x
≥0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ>2)=0.15,則P(0≤ξ≤1)=( 。
A、0.85B、0.70
C、0.35D、0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,有
10a11a12a20
=
30a1a2a30
成立.類似地,在等差數(shù)列{bn}中,有
 
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3cos2x-4cosx+1,(x∈R)的值域?yàn)椋?div id="lb37zl1" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an},各項(xiàng)均為正數(shù)的等比數(shù)列{bn},滿足a1=l,b1=2,a4=b2,a8=b3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sinx(x∈R)的圖象上所有點(diǎn)向左平行移動(dòng)
π
3
個(gè)單位長(zhǎng)度,再把所得圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)是( 。
A、y=sin(
1
2
x-
π
3
),x∈R
B、y=sin(
1
2
x+
π
3
),x∈R
C、y=sin(2x-
π
3
),x∈R
D、y=sin(2x+
π
3
),x∈R

查看答案和解析>>

同步練習(xí)冊(cè)答案