設(shè)奇函數(shù)f(x)在(0,+∞)上為單調(diào)遞增函數(shù),且f(2)=0,則不等式
f(-x)-f(x)
2x
≥0的解集為
 
考點(diǎn):奇偶性與單調(diào)性的綜合,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進(jìn)行等價轉(zhuǎn)化即可.
解答: 解:∵奇函數(shù)f(x)在(0,+∞)上為增函數(shù),又f(2)=0,
∴函數(shù)f(x)在(-∞,0)上為增函數(shù),且f(-2)=-f(2)=0,
∴函數(shù)f(x)的圖象如圖,
則不等式不等式
f(-x)-f(x)
2x
≥0等價為
-2f(x)
2x
=
-f(x)
x
≥0

f(x)
x
≤0
,
等價為x>0時,f(x)≤0,此時0<x≤2.
當(dāng)x<0時,f(x)≥0,此時-2≤x<0,
即不等式的解集是:[-2,0)∪(0,2].
故答案為:[-2,0)∪(0,2].
點(diǎn)評:本題主要考查不等式的解法,根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)作出函數(shù)的草圖是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
2
,π),tanα=-2,則cos(
3
-2α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則(2+i)(3+i)等于=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a3=5,a5-5a2=3,等比數(shù)列{bn}滿足b1=3,公比q=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=x-
1
x
上點(diǎn)(1,0)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“-4<a<2”是“方程
x2
a+4
+
y2
2-a
=1表示橢圓”的
 
條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)場給某種農(nóng)作物施肥量x(單位:噸)與其產(chǎn)量y(單位:噸)的統(tǒng)計(jì)數(shù)據(jù)如表:
施肥量x(噸) 
 產(chǎn)量y(噸) 2639 49 54 
由于表中的數(shù)據(jù),得到回歸直線方程為
y
=9.4x+
a
,當(dāng)施肥量x=6時,該農(nóng)作物的預(yù)報(bào)產(chǎn)量是( 。
A、72.0B、67.7
C、65.5D、63.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了改善中午放學(xué)時校門口交通狀況,高二年級安排A、B、C三名學(xué)生會干部在周一至周五的5天中參加交通執(zhí)勤,要求每人參加一天但每天至多安排一人,并要求A同學(xué)安排在另外兩位同學(xué)前面.不同的安排方法共有
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A及邊a,b,若此三角形有一解,則a,b,A滿足的條件是
 

查看答案和解析>>

同步練習(xí)冊答案