4.已知(3x-1)7=a0x7+a1x6+…+a6x+a7,則a0+a2+a4+a6=8256.

分析 分別令x=1,-1即可得出.

解答 解:(3x-1)7=a0x7+a1x6+…+a6x+a7,
令x=1,則27=(3-1)7=a0+a1+…+a6+a7,
令x=-1可得:-47=-a0+a1-…-a6+a7,
∴2(a0+a2+a4+a6)=27+47=8256,
故答案為:8256.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在一次軍事演習(xí)中,藍(lán)方在一條東西走向公路上的A處朝正南方撤退,紅方在公路B處沿南偏西60°方向?qū)嵤⿺r截,紅方行駛1000米到C處,發(fā)現(xiàn)前方無法通行,決定調(diào)整方向再朝南偏西45°方向前進(jìn)了相同的距離,剛好在D處攔截到藍(lán)方,求攔截點(diǎn)D到公路的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在[a-1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x-1)>f(a)的解集為[$\frac{1}{3}$,$\frac{2}{3}$)∪($\frac{4}{3}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,已知A(-1,2),B(2,1),C(1,0).
(Ⅰ)判定三角形ABC形狀;
(Ⅱ)求過點(diǎn)A且在x軸和在y軸上截距互為倒數(shù)的直線方程;
(Ⅲ)已知l是過點(diǎn)A的直線,點(diǎn)C到直線l的距離為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.要證:a2+b2-1-a2b2≥0,只要證明( 。
A.2ab-1-a2b2≥0B.(a2-1)(b2-1)≥0
C.$\frac{(a+b)2}{2}$-1-a2b2≥0D.a2+b2-1-$\frac{{a}^{4}+^{4}}{2}$≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在極坐標(biāo)系下,點(diǎn)$A(2,\frac{3π}{4})$到直線l:ρcos(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$的距離為( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$2-\frac{{\sqrt{2}}}{2}$D.$2+\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C所對(duì)的邊為a,b,c,設(shè)S為△ABC的面積,滿足S=$\frac{{\sqrt{3}}}{4}({a^2}+{c^2}-{b^2})$
(1)求角B的大小
(2)求sinA+sinC的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.現(xiàn)有2位男生和3位女生共5位同學(xué)站成一排.(用數(shù)字作答)
(1)若2位男生相鄰且3位女生相鄰,則共有多少種不同的排法?
(2)若男女相間,則共有多少種不同的排法?
(3)若男生甲不站兩端,女生乙不站最中間,則共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是一幾何體的直觀圖、正視圖和俯視圖.下列選項(xiàng)圖中,按照畫三視圖的要求畫出的該幾何體的側(cè)視圖是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案