【題目】如圖所示,為了測量A、B處島嶼的距離,小海在D處觀測,A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛20海里至C處,觀測B在C處的正北方向,A在C處的北偏西45°方向,則A、B兩島嶼的距高為___________海里.
【答案】
【解析】
如詳解圖,連接AB,在中,已知∠ACD=45°,∠ACD=45°,CD=20,可以由正弦定理求出AD 的邊長,又在Rt△BCD中,已知∠BDC=45°,∠BCD=90°及CD=20長度此時(shí)可以求出AD=BD 再利用∠ADB=60°可以求出A、B兩島嶼的距離.
連接AB,由題意可知CD=20,∠ACD=45°,∠BDC=45°,∠BCD=90°,∠ACD=45°,∠CAD=30°,∠ADB=60°,
在△ACD中,由正弦定理得,
∴AD=,
在Rt△BCD中,∵∠BDC=45°,∠BCD=90°,
∴BD=CD=.
在△ABD中,∠ADB=60°,AD=BD,所以,△ABD為等邊三角形,所以,AB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機(jī)在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計(jì)結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對(duì)一次購物不低于元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定, 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)為了迎接春節(jié),商場進(jìn)行讓利活動(dòng),一次購物款元及以上的一次返利元;一次購物不超過元的按購物款的百分比返利,具體見下表:
一次購物款(單位:元) | ||||
返利百分比 |
請問該商場日均大約讓利多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在雙曲線的右支上存在點(diǎn),使得點(diǎn)與雙曲線的左、右焦點(diǎn),形成的三角形的內(nèi)切圓的半徑為,若的重心滿足,則雙曲線的離心率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為.為的右焦點(diǎn),為上一點(diǎn),軸,的半徑為.
(1)求和的方程;
(2)若直線與交于兩點(diǎn),與交于兩點(diǎn),其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的反函數(shù);
(2)若,求函數(shù)的值域并寫出函數(shù)的單調(diào)區(qū)間;
(3)記函數(shù),若函數(shù)的最大值為5,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水庫的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn)(用t表示第t月份,),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量V(單位:億立方米)與時(shí)間t的近似函數(shù)關(guān)系為:當(dāng)0<t≤10時(shí),;當(dāng)10<t≤12時(shí),;若2月份該水庫的蓄水量為33.6億立方米.
(1)求實(shí)數(shù)a的值;
(2)求一年內(nèi)該水庫的最大蓄水量.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若a=3,且對(duì)任意的x1∈[-1,2],總存在,使g(x1)-f(x2)=0成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件,為激發(fā)大家的學(xué)習(xí)興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng),這款軟件的激活碼為下列數(shù)學(xué)問題的答案:已知數(shù)列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項(xiàng)和為2的整數(shù)冪,那么該軟件的激活碼是________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com