17.函數(shù)y=f(x+1)+5是定義域為R的奇函數(shù),則f(e)+f(2-e)=-10.

分析 根據(jù)題意,令y=g(x)=f(x+1)+5,用賦值法可得g(e-1)=f(e)+5,g(1-e)=f(2-e)+5,結(jié)合函數(shù)為奇函數(shù)可得g(e-1)+g(1-e)=0,進而可得f(e)+f(2-e)=-10,即可得答案.

解答 解:根據(jù)題意,令y=g(x)=f(x+1)+5,
則有g(shù)(e-1)=f(e)+5,g(1-e)=f(2-e)+5,
又由g(x)為奇函數(shù),
則有g(shù)(e-1)+g(1-e)=0,
即[f(e)+5]+[f(2-e)+5]=0,
則有f(e)+f(2-e)=-10;
故答案為:-10.

點評 本題考查函數(shù)奇偶性的應(yīng)用,注意運用特殊值法進行分析.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}中的a2、a4032是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的兩個極值點,則log2(a2•a2017•a4032)=( 。
A.$4+log_2^6$B.4C.$3+log_2^3$D.$4+log_2^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從只有3張中獎的10張彩票中不放回隨機逐張抽取,設(shè)X表示直至抽到中獎彩票時的次數(shù),則P(X=4)=$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)=xex,若f'(x0)=0,則x0=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)M、N是兩個非空集合,定義M?N={(a,b)|a∈M,b∈N},若P={0,1,2 },Q={1,2},則P?Q中元素的個數(shù)是( 。
A.4B.9C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知Sn是等差數(shù)列{an}的前n項和,且s6>s7>s5,給出下列五個命題:①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項為S11;⑤|a5|>|a7|.其中正確命題的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.正項等比數(shù)列{an}中的a1,a4033是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-3$的極值點,則log6a2017=( 。
A.1B.2C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有以下結(jié)論:
①已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;
②已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1,用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1.
下列說法中正確的是(  )
A.①與②的假設(shè)都錯誤B.①與②的假設(shè)都正確
C.①的假設(shè)正確;②的假設(shè)錯誤D.①的假設(shè)錯誤;②的假設(shè)正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=cos2$\frac{x}{2}+\frac{1}{2}$sinx,x∈[0,π],f'(x)為函數(shù)f(x)的導(dǎo)函數(shù),則函數(shù)y=[f(x)+f'(x)]2的最小值為( 。
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{9}{4}$

查看答案和解析>>

同步練習冊答案