7.已知命題p:方程$\frac{x^2}{k-2}-\frac{y^2}{5-k}=1$表示焦點在x軸上的雙曲線,命題q:?x∈(0,+∞),x2+1≥kx恒成立,若“p∨q”是真命題,“¬(p∧q)”也是真命題,求k的取值范圍.

分析 求出兩個命題為真命題時,k的范圍,然后利用命題的真假,推出結果即可.

解答 (10分)解:p真時有:k-2>0且5-k>0  即2<k<5;(2分)
q真時:?x∈(0,+∞),x2+1≥kx恒成立,即:x+$\frac{1}{x}$≥k,因為x+$\frac{1}{x}$≥2在x>0時恒成立,可得:k≤2    (5分)
由p∨q是真命題,且?(p∧q)也是真命題得:p與q為一真一假;(7分)
當p真q假時,2<k<5;
當p假q真時,k≤2;綜上,所求k的取值范圍是(-∞,5).(10分)

點評 本題考查命題的真假的判斷與應用,是基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知曲線C上的動點P(x,y)到點F(0,1)的距離比到直線l:y=-2的距離小1.動點E在直線l上,過點E分別做曲線C的切線EA,EB,切點為A,B.
(1)求曲線C的方程;
(2)求|AB|的最小值;
(3)在直線l上是否存在一點M,使得△ABM為以AB為斜邊的等腰直角三角形?若存在,求出點M坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.數(shù)列{an}各項均為正數(shù),a1=$\frac{1}{2}$,且對任意的n∈N*,都有an+1=an+λan2(λ>0).
(1)取λ=$\frac{1}{{{a_{n+1}}}}$,求證:數(shù)列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若λ=$\frac{1}{2016}$,是否存在n∈N*,使得an>1,若存在,試求出n的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.過拋物線y2=2px(p>0)焦點的直線l與拋物線交于A、B兩點,以AB為直徑的圓的方程為(x-3)2+(y-2)2=16,則p=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PA⊥PC,底面ABCD為菱形,G為PC中點,E、F分別為AB、PB上一點,△BCE的面積為6$\sqrt{3},AB=4AE=4\sqrt{2},AC=4\sqrt{6}$,PB=4PF.
(1)求證:AC⊥DF;
(2)求證:EF∥平面BDG;
(3)求三棱錐B-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一條對稱軸方程為$x=\frac{π}{6}$,則實數(shù)a=$\sqrt{3}$;函數(shù)f(x)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設x,y為非零實數(shù),a>0,且a≠1,給出下列式子或運算:
①logax2=3logax;
②loga|xy|=loga|x|•loga|y|;
③若e=lnx,則x=e2
④若lg(lny)=0,則y=e;
⑤若${2^{1+{{log}_4}x}}$=16,則x=64.
其中正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列關系中正確的是(  )
A.$\sqrt{2}$∈QB.|-3|∉ZC.$\sqrt{4}$∈ND.π∉R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$y=\frac{x}{1-cosx}$的導數(shù)是( 。
A.$\frac{1-cosx-xsinx}{1-cosx}$B.$\frac{1-cosx-xsinx}{{{{(1-cosx)}^2}}}$
C.$\frac{1-cosx+sinx}{{{{(1-cosx)}^2}}}$D.$\frac{1-cosx+xsinx}{{{{(1-cosx)}^2}}}$

查看答案和解析>>

同步練習冊答案