【題目】從某校高三年級(jí)800名學(xué)生中隨機(jī)抽取50名測(cè)量身高,據(jù)測(cè)量被抽取的學(xué)生的身高全部介于155cm195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),……,第八組[190.195],下圖是按上述分組方法得到的頻率分布直方圖.

1)求第七組的頻數(shù);

(2)試估計(jì)這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(180cm)的人數(shù)為多少.

【答案】(1) 3. (2) 144.

【解析】

試題(1)由頻率分布直方圖得第七組頻率為:1(0.008×20.016×20.04×20.06)×50.06,

第七組的人數(shù)為0.06×503.

由各組頻率可得以下數(shù)據(jù):

組別









樣本數(shù)

2

4

10

10

15

4

3

2

(2)由頻率分布直方圖得后三組頻率和為0.080.060.040.18

估計(jì)這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(180cm)的人數(shù)為800×0.18144.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì).直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù)(史稱戴德金分割),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集劃分為兩個(gè)非空的子集,且滿足,,中的每一個(gè)元素都小于中的每一個(gè)元素,則稱為戴德金分割.試判斷,對(duì)于任一戴德金分割,下列選項(xiàng)中,不可能成立的是( )

A. 沒(méi)有最大元素, 有一個(gè)最小元素 B. 沒(méi)有最大元素, 也沒(méi)有最小元素

C. 有一個(gè)最大元素, 有一個(gè)最小元素 D. 有一個(gè)最大元素, 沒(méi)有最小元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上是減函數(shù),求的最小值;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正四棱錐中, 分別是

的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論中不恒成立的是(  )

A. 異面 B. ∥面

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的側(cè)面是邊長(zhǎng)為的菱形,,且

1)求證:

2)若,當(dāng)二面角為直二面角時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求點(diǎn)在上,點(diǎn)在上,且對(duì)角線過(guò)點(diǎn),已知米,米.

(1)要使矩形的面積大于50平方米,則的長(zhǎng)應(yīng)在什么范圍?

(2)當(dāng)的長(zhǎng)為多少米時(shí),矩形花壇的面積最。坎⑶蟪鲎钚≈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , 垂直于底面 , , 分別為 的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),,求的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案