【題目】由無理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì).直到1872年,德國數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù)(史稱戴德金分割),并把實數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無理數(shù)被認(rèn)為“無理”的時代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集劃分為兩個非空的子集,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,不可能成立的是( )

A. 沒有最大元素, 有一個最小元素 B. 沒有最大元素, 也沒有最小元素

C. 有一個最大元素, 有一個最小元素 D. 有一個最大元素, 沒有最小元素

【答案】C

【解析】試題分析:A正確,例如M是所有的有理數(shù),N是所有的有理數(shù)。B正確,如M是所有負(fù)的有理數(shù),零和平方小于2的正有理數(shù),N是所有平方大于2的正有理數(shù)。顯然MN的并集是所有的有理數(shù),因為平方等于2的數(shù)不是有理數(shù)。D正確,如例如M是所有的有理數(shù),N是所有的有理數(shù)。C錯;M有最大元素a,且N有最小元素b是不可能的,因為這樣就有一個有理數(shù)不存在于MN兩個集合中,與MN的并集是所有的有理數(shù)矛盾

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點(diǎn))來處理污水.管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點(diǎn)的距離之比為定值的點(diǎn)的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標(biāo)系中,點(diǎn).設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )

A. 的方程為

B. 軸上存在異于的兩定點(diǎn),使得

C. 當(dāng)三點(diǎn)不共線時,射線的平分線

D. 上存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于的點(diǎn).

(1)證明:平面平面;

(2)當(dāng)三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù),若滿足;② 當(dāng),且時,都有;③ 當(dāng),且時,都有,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):;② ; ③;④.則其中是“偏對稱函數(shù)”的函數(shù)序號為 _______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機(jī)選取該月中的5天中11時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標(biāo)準(zhǔn)差小于乙地該月11時的氣溫的標(biāo)準(zhǔn)差
④甲地該月11時的氣溫的標(biāo)準(zhǔn)差大于乙地該月11時的氣溫的標(biāo)準(zhǔn)差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有、兩個崗位招聘大學(xué)畢業(yè)生,其中第一天收到這兩個崗位投簡歷的大學(xué)生人數(shù)如下表:

崗位

崗位

總計

女生

12

8

20

男生

24

56

80

總計

36

64

100

(1)根據(jù)以上數(shù)據(jù)判斷是有的把握認(rèn)為招聘的、兩個崗位與性別有關(guān)?

(2)從投簡歷的女生中隨機(jī)抽取兩人,記其中投崗位的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高三年級800名學(xué)生中隨機(jī)抽取50名測量身高,據(jù)測量被抽取的學(xué)生的身高全部介于155cm195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),……,第八組[190.195],下圖是按上述分組方法得到的頻率分布直方圖.

1)求第七組的頻數(shù);

(2)試估計這所學(xué)校高三年級800名學(xué)生中身高在180cm以上(180cm)的人數(shù)為多少.

查看答案和解析>>

同步練習(xí)冊答案