精英家教網 > 高中數學 > 題目詳情

【題目】由無理數引發(fā)的數學危機一直延續(xù)到19世紀.直到1872年,德國數學家戴德金從連續(xù)性的要求出發(fā),用有理數的“分割”來定義無理數(史稱戴德金分割),并把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續(xù)2000多年的數學史上的第一次大危機.所謂戴德金分割,是指將有理數集劃分為兩個非空的子集,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,不可能成立的是( )

A. 沒有最大元素, 有一個最小元素 B. 沒有最大元素, 也沒有最小元素

C. 有一個最大元素, 有一個最小元素 D. 有一個最大元素, 沒有最小元素

【答案】C

【解析】試題分析:A正確,例如M是所有的有理數,N是所有的有理數。B正確,如M是所有負的有理數,零和平方小于2的正有理數,N是所有平方大于2的正有理數。顯然MN的并集是所有的有理數,因為平方等于2的數不是有理數。D正確,如例如M是所有的有理數,N是所有的有理數。C錯;M有最大元素a,且N有最小元素b是不可能的,因為這樣就有一個有理數不存在于MN兩個集合中,與MN的并集是所有的有理數矛盾

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】古希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現:“平面內到兩個定點的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標系中,.設點的軌跡為,下列結論正確的是( )

A. 的方程為

B. 軸上存在異于的兩定點,使得

C. 三點不共線時,射線的平分線

D. 上存在點,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于的點.

(1)證明:平面平面;

(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義域為的函數,若滿足;② ,且時,都有;③ ,且時,都有,則稱為“偏對稱函數”.現給出四個函數:;② ; ③;④.則其中是“偏對稱函數”的函數序號為 _______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數據(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據莖葉圖能得到的正確結論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)有、兩個崗位招聘大學畢業(yè)生,其中第一天收到這兩個崗位投簡歷的大學生人數如下表:

崗位

崗位

總計

女生

12

8

20

男生

24

56

80

總計

36

64

100

(1)根據以上數據判斷是有的把握認為招聘的、兩個崗位與性別有關?

(2)從投簡歷的女生中隨機抽取兩人,記其中投崗位的人數為,求的分布列和數學期望.

參考公式:,其中.

參考數據:

0.050

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某校高三年級800名學生中隨機抽取50名測量身高,據測量被抽取的學生的身高全部介于155cm195cm之間,將測量結果按如下方式分成八組:第一組[155,160),第二組[160,165),……,第八組[190.195],下圖是按上述分組方法得到的頻率分布直方圖.

1)求第七組的頻數;

(2)試估計這所學校高三年級800名學生中身高在180cm以上(180cm)的人數為多少.

查看答案和解析>>

同步練習冊答案