【題目】由無理數引發(fā)的數學危機一直延續(xù)到19世紀.直到1872年,德國數學家戴德金從連續(xù)性的要求出發(fā),用有理數的“分割”來定義無理數(史稱戴德金分割),并把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續(xù)2000多年的數學史上的第一次大危機.所謂戴德金分割,是指將有理數集劃分為兩個非空的子集與,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,不可能成立的是( )
A. 沒有最大元素, 有一個最小元素 B. 沒有最大元素, 也沒有最小元素
C. 有一個最大元素, 有一個最小元素 D. 有一個最大元素, 沒有最小元素
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=.
(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現:“平面內到兩個定點的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標系中,點.設點的軌跡為,下列結論正確的是( )
A. 的方程為
B. 在軸上存在異于的兩定點,使得
C. 當三點不共線時,射線是的平分線
D. 在上存在點,使得
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,是上異于,的點.
(1)證明:平面平面;
(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數,若滿足① ;② 當,且時,都有;③ 當,且時,都有,則稱為“偏對稱函數”.現給出四個函數:①;② ; ③;④.則其中是“偏對稱函數”的函數序號為 _______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數據(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據莖葉圖能得到的正確結論的編號為( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)有、兩個崗位招聘大學畢業(yè)生,其中第一天收到這兩個崗位投簡歷的大學生人數如下表:
崗位 | 崗位 | 總計 | |
女生 | 12 | 8 | 20 |
男生 | 24 | 56 | 80 |
總計 | 36 | 64 | 100 |
(1)根據以上數據判斷是有的把握認為招聘的、兩個崗位與性別有關?
(2)從投簡歷的女生中隨機抽取兩人,記其中投崗位的人數為,求的分布列和數學期望.
參考公式:,其中.
參考數據:
0.050 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校高三年級800名學生中隨機抽取50名測量身高,據測量被抽取的學生的身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160),第二組[160,165),……,第八組[190.195],下圖是按上述分組方法得到的頻率分布直方圖.
(1)求第七組的頻數;
(2)試估計這所學校高三年級800名學生中身高在180cm以上(含180cm)的人數為多少.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com