已知橢圓的離心率為,右焦點(diǎn)為(,0).
(1)求橢圓的方程;  
(2)若過原點(diǎn)作兩條互相垂直的射線,與橢圓交于兩點(diǎn),求證:點(diǎn)到直線的距離為定值.
(1)(2)見解析

試題分析:(1)由離心率,右焦點(diǎn)坐標(biāo)易得各常量值. (2)先假設(shè),當(dāng)直線AB斜率存在時(shí),與橢圓方程聯(lián)立,可得又OA⊥OB,滿足根與系數(shù)的關(guān)系,可得4 m2=3 k2+3,代入點(diǎn)到直線的距離可得d.
試題解析:(1)由右焦點(diǎn)為(,0),則,又,所以,
那么                                   4分
(2) 設(shè),,若k存在,則設(shè)直線ABykxm.
,得    6分
>0,                 8分
OAOBx1x2y1y2x1x2+(k x1m) (k x2m)=(1+k2) x1x2k m(x1x2)=0       10分
代入,得4 m2=3 k2+3原點(diǎn)到直線AB的距離d.      12分
當(dāng)AB的斜率不存在時(shí),,可得,依然成立.   13分
所以點(diǎn)O到直線的距離為定值           14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓ab0)的離心率為,且過點(diǎn)().
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+t與圓(1<R<2)相切于點(diǎn)A,且l與橢圓E只有一個(gè)公共點(diǎn)B.
①求證:;
②當(dāng)R為何值時(shí),取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱.

(1)若點(diǎn)P的坐標(biāo),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別、,點(diǎn)是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,的周長(zhǎng)為16.
(I)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截的線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),一個(gè)焦點(diǎn)為
(1)求橢圓的方程;
(2)若直線軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)是離心率為的橢圓上的一點(diǎn),斜率為的直線交橢圓,兩點(diǎn),且、三點(diǎn)互不重合.

(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B、D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點(diǎn),A、B分別是此橢圓的右頂點(diǎn)和上頂點(diǎn),P是橢圓上一點(diǎn),O是坐標(biāo)原點(diǎn),OP∥AB,PF1⊥x軸,F(xiàn)1A=,則此橢圓的方程是________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案