已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.
(1)+y2=1(2)-1
(1)∵雙曲線的漸近線為y=±x,兩漸近線夾角為60°,又<1,∴∠POx=30°,
=tan30°=.∴a=b.又a2+b2=4,∴a2=3,b2=1.
故橢圓C的方程為+y2=1.
(2)由已知l:y=(x-c),與y=x解得P.
=λ,得A.
將A點(diǎn)坐標(biāo)代入橢圓方程,得(c2+λa2)2+λ2a4=(1+λ)2a2c2.∴(e2+λ)2+λ2=e2(1+λ)2.
∴λ2+3≤3-2.∴λ的最大值為-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)為(,0).
(1)求橢圓的方程;  
(2)若過原點(diǎn)作兩條互相垂直的射線,與橢圓交于兩點(diǎn),求證:點(diǎn)到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個焦點(diǎn)為,其短軸上的一個端點(diǎn)到的距離為.

(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動點(diǎn),過點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(。┊(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時,求直線的方程,
并證明
(ⅱ)求證:線段的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過原點(diǎn)O作兩條相互垂直的直線分別與橢圓P:交于A、C與B、D, 則四邊形ABCD面積最小值為______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動點(diǎn)P與A、B連線的斜率之積為-.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為r.
(ⅰ)求圓M的方程;
(ⅱ)當(dāng)r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以雙曲線-3x2+y2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動點(diǎn)在橢圓上,若點(diǎn)坐標(biāo)為,,且的最小值是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的中心在原點(diǎn),對稱軸為坐標(biāo)軸,且長軸長是短軸長的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的方程C:),若橢圓的離心率,則的取值范圍是.

查看答案和解析>>

同步練習(xí)冊答案