【題目】電子芯片是“中國(guó)智造”的靈魂,是所有整機(jī)設(shè)備的“心臟”.某國(guó)產(chǎn)電子芯片公司,通過(guò)大數(shù)據(jù)分析,得到如下規(guī)律:生產(chǎn)一種高端芯片x()萬(wàn)片,其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)片的生產(chǎn)成本為200萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入(單位:萬(wàn)元)滿(mǎn)足假定生產(chǎn)的芯片都能賣(mài)掉.
(1)將利潤(rùn)(單位:萬(wàn)元)表示為產(chǎn)量x(單位:萬(wàn)片)的函數(shù);
(2)當(dāng)產(chǎn)量x(單位:萬(wàn)片)為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
【答案】(1);(2)產(chǎn)量為5萬(wàn)片時(shí),公司所獲利潤(rùn)最大,最大利潤(rùn)為9200萬(wàn)元.
【解析】
(1)首先求出總成本函數(shù),再由計(jì)算可得;
(2)由(1)利用分段函數(shù)的性質(zhì)及二次函數(shù)的性質(zhì)計(jì)算可得.
(1)當(dāng)產(chǎn)量為萬(wàn)片時(shí),由題意得.
因?yàn)?/span>
所以
(2)由(1)可得,當(dāng)時(shí),. 所以當(dāng)時(shí),(萬(wàn)元).
當(dāng)時(shí),,單調(diào)遞增,所以(萬(wàn)元)
綜上,當(dāng)時(shí),(萬(wàn)元),即當(dāng)產(chǎn)量為5萬(wàn)片時(shí),公司所獲利潤(rùn)最大,最大利潤(rùn)為9200萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四棱錐中,,,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的為( ).
A.B.C.面D.面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市為了防止轉(zhuǎn)基因產(chǎn)品影響民眾的身體健康,要求產(chǎn)品在進(jìn)入超市前必須進(jìn)行兩輪轉(zhuǎn)基因檢測(cè),只有兩輪都合格才能銷(xiāo)售,否則不能銷(xiāo)售.已知某產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒(méi)有影響.
(1)求該產(chǎn)品不能銷(xiāo)售的概率;
(2)如果產(chǎn)品可以銷(xiāo)售,則每件產(chǎn)品可獲利50元;如果產(chǎn)品不能銷(xiāo)售,則每件產(chǎn)品虧損60元.已知一箱中有產(chǎn)品4件,記一箱產(chǎn)品獲利元,求的分布列,并求出均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù),).
(1)求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(2)若對(duì)于任意,存在,使得,求的取值范圍;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)又本(xiàn)與焦點(diǎn)坐標(biāo)為,離心率為的曲線(xiàn)相交于兩點(diǎn)(為曲線(xiàn)的坐標(biāo)原點(diǎn)),且.
(1)求曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)證明:和都為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線(xiàn)段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)相鄰兩對(duì)稱(chēng)軸間的距離為,若將的圖象先向左平移個(gè)單位,再向下平移1個(gè)單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對(duì)稱(chēng)中心;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com