已知點是直線被橢圓所截得的線段中點,求直線的方程。

解析試題分析:由題意可設(shè)的方程為:


整理,得

的中點為

解得 
代入,得
,經(jīng)驗證
所以滿足題目要求
所求的方程為:
考點:直線與橢圓相交問題
點評:直線與橢圓相交的中點弦問題的求解一般有兩種思路:其一,設(shè)出直線方程,與橢圓方程聯(lián)立將中點坐標轉(zhuǎn)化為兩交點坐標,其二,采用點差法,即將兩交點坐標分別代入橢圓方程,得到的兩式子相減即可得到直線斜率,兩種方法都要驗證所求直線是否滿足與橢圓有兩交點

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,一個頂點為,且其右焦點到直線的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)直線過定點,與橢圓交于兩個不同的點,且滿足
求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓:的焦距為,離心率為,其右焦點為,過點作直線交橢圓于另一點.
(Ⅰ)若,求外接圓的方程;
(Ⅱ)若直線與橢圓相交于兩點、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的方程為,過點作圓的兩條切線,切點分別為、,直線恰好經(jīng)過橢圓的右頂點和上頂點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓垂直于軸的一條弦,所在直線的方程為是橢圓上異于的任意一點,直線分別交定直線于兩點、,求證.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓與離心率為的橢圓)相切于點.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點引兩條互相垂直的兩直線、與兩曲線分別交于點與點、(均不重合).
(ⅰ)若為橢圓上任一點,記點到兩直線的距離分別為、,求的最大值;
(ⅱ)若,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

動圓M過定點A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點,與橢圓分別交于點,各點均不重合,且滿足,. 當時,試證明直線過定點.過定點(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知離心率為的橢圓上的點到左焦點的最長距離為

(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

查看答案和解析>>

同步練習冊答案