【題目】已知點是圓:上的一動點,點,點在線段上,且滿足.
(1)求點的軌跡的方程;
(2)設曲線與軸的正半軸,軸的正半軸的交點分別為點,,斜率為的動直線交曲線于、兩點,其中點在第一象限,求四邊形面積的最大值.
【答案】(1);(2).
【解析】
(1)由向量的數(shù)量積的運算,可得,化簡得,利用橢圓的定義,即可求得動點的軌跡方程.
(2)設直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關系和弦長公式,求得
和,在利用點到直線的距離公式,求得點到直線的距離 和點到直線的距離為,得出四邊形面積,即可求解.
(1)由題意, ,
∴.
∴ ,
∴點的軌跡是以點,為焦點且長軸長為6的橢圓,
即,,∴,,∴.
即點的軌跡的方程為.
(2)由(1)可得,.
設直線的方程為,由點在第一象限,得,,,
由,得,
則,, ,
點到直線的距離為,點到直線的距離為,
∴四邊形面積 ,
又,∴當時,取得最大值.
即四邊形面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】某包子店每天早晨會提前做好若干籠包子,以保證當天及時供應,每賣出一籠包子的利潤為40元,當天未賣出的包子作廢料處理, 每籠虧損20元.該包子店記錄了60天包子的日需求量(單位:籠,),整理得到如圖所示的條形圖,以這60天各需求量的頻率代替相應的概率.
(1)設為一天的包子需求量,求的數(shù)學期望.
(2)若該包子店想保證以上的天數(shù)能夠足量供應,則每天至少要做多少籠包子?
(3)為了減少浪費,該包子店一天只做18籠包子,設為當天的利潤(單位:元),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是的導函數(shù),為自然對數(shù)的底數(shù).
(1)討論的單調性;
(2)當時,證明:;
(3)當時,判斷函數(shù)零點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為4的正方形,側面為正三角形且二面角為.
(Ⅰ)設側面與的交線為,求證:;
(Ⅱ)設底邊與側面所成角的為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某健身館在2019年7、8兩月推出優(yōu)惠項目吸引了一批客戶.為預估2020年7、8兩月客戶投入的健身消費金額,健身館隨機抽樣統(tǒng)計了2019年7、8兩月100名客戶的消費金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:
(1)若把2019年7、8兩月健身消費金額不低于800元的客戶,稱為“健身達人”,經數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關數(shù)據(jù),請補全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認為“健身達人”與性別有關?
健身達人 | 非健身達人 | 總計 | |
男 | 10 | ||
女 | 30 | ||
總計 |
(2)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.
若某人打算購買1000元的營養(yǎng)品,請從實際付款金額的數(shù)學期望的角度分析應該選擇哪種優(yōu)惠方案.
(3)在(2)中的方案二中,金額超過800元可抽獎三次,假設三次中獎結果互不影響,且三次中獎的概率為,記為銳角的內角,
求證:
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知圓:和拋物線:,圓的切線與拋物線相交于不同的兩點,.
(1)當直線的斜率為1時,求;
(2)設點為點關于直線的對稱點,是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,城市缺水問題尤為突出,某市為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照,……分成9組,制成了如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的值,并估計該市市民月用水量的中位數(shù);
(2)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com