【題目】已知函數(shù)的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).

1)討論的單調(diào)性;

2)當時,證明:;

3)當時,判斷函數(shù)零點的個數(shù),并說明理由.

【答案】(1)①當時, 上為減函數(shù);②當時, 的減區(qū)間為,增區(qū)間為;(2) 證明見解析;(3)一個零點,理由見解析.

【解析】

試題分析:(1)討論函數(shù)單調(diào)性,先求導(dǎo),當時,,故上為減函數(shù);當時,解可得,故的減區(qū)間為,增區(qū)間為;(2)根據(jù),構(gòu)造函數(shù),設(shè),,當時,,所以是增函數(shù),,得證;(3)判斷函數(shù)的零點個數(shù),需要研究函數(shù)的增減性及極值端點,由(1)可知,當時,是先減再增的函數(shù),其最小值為,而此時,且,故恰有兩個零點

從而得到的增減性,時,;當時,;當時,,從而兩點分別取到極大值和極小值,再證明極大值,所以函數(shù)不可能有兩個零點,只能有一個零點.

試題解析:

(1)對函數(shù)求導(dǎo)得,

,

①當時,,故上為減函數(shù);

②當時,解可得,故的減區(qū)間為,增區(qū)間為

(2) ,設(shè),則,

易知當時,,

3)由(1)可知,當時,是先減再增的函數(shù),

其最小值為,

而此時,且,故恰有兩個零點

∵當時,;當時,;當時,

,

兩點分別取到極大值和極小值,且,

,

,∴,但當時,,則,不合題意,所以,故函數(shù)的圖象與軸不可能有兩個交點.

∴函數(shù)只有一個零點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當時,函數(shù)的圖象有三個不同的交點,求實數(shù)的范圍;

(2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)ya2x+2ax-1(a>0且a≠1),當自變量x∈[-1,1]時,函數(shù)的最大值為14.試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程是為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于兩點.

(Ⅰ)求曲線的直角坐標方程及直線恒過的定點的坐標;

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意x∈(0,+∞),恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點

1)證明:平面平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量,獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格在.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團為調(diào)查學(xué)生學(xué)習圍棋的情況,隨機抽取了100名學(xué)生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有的把握認為“圍棋迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機抽樣方法每次抽取1名學(xué)生,抽取3次,記所抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的奇函數(shù), 是常數(shù).

1的值;

2用定義法證明的增函數(shù)

3不等式對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB側(cè)面BB1C1C,ABBC=1,BB1=2,∠BCC1 .

(1)求證:C1B平面ABC;

設(shè) (0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,

試求λ的值.

查看答案和解析>>

同步練習冊答案