【題目】已知函數(shù)f(x)=(4﹣x)ex﹣2 , 試判斷是否存在m使得y=f(x)與直線3x﹣2y+m=0(m為確定的常數(shù))相切?
【答案】解:函數(shù)f(x)=(4﹣x)ex﹣2 , 導(dǎo)數(shù)為f′(x)=(3﹣x)ex﹣2 ,
設(shè)g(x)=(3﹣x)ex﹣2 , 則g'(x)=(2﹣x)ex﹣2 ,
由x>2時(shí),g'(x)<0,g(x)遞減;x<2時(shí),g'(x)>0,g(x)遞增.
可推得g(x)極大值為g(2)=1,也為最大值.
假設(shè)y=f(x)與直線3x﹣2y+m=0(m為確定的常數(shù))相切,
則切線的斜率為 ,
由于切線的斜率的最大值為1.
所以 無解.
所以不存在m滿足題意.
【解析】求出f(x)的導(dǎo)數(shù),可得切線的斜率,設(shè)g(x)=(3﹣x)ex﹣2 , 求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得極值也為最值,假設(shè)存在m滿足題意,由直線方程可得斜率大于最值,即可判斷不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn= nan+an﹣c(c是常數(shù),n∈N*),a2=6.
(Ⅰ)求c的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 若2Tn>m﹣2對n∈N*恒成立,求最大正整數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna﹣b(b∈R,a>0且a≠1),e是自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(2)當(dāng)a>1時(shí),若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,求實(shí)數(shù)a的取值范圍.(參考公式:(ax)′=axlna)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},a2=2,an+an+1=3n,n∈N* , 則a2+a4+a6+a8+a10+a12= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),橢圓C的右焦點(diǎn)F的坐標(biāo)為 ,短軸長為2.
(I)求橢圓C的方程;
(II)若點(diǎn)P為直線x=4上的一個(gè)動(dòng)點(diǎn),A,B為橢圓的左、右頂點(diǎn),直線AP,BP分別與橢圓C的另一個(gè)交點(diǎn)分別為M,N,求證:直線MN恒過點(diǎn)E(1,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)超市購進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷售情況,該超市隨機(jī)調(diào)查了15位顧客(記為ai , i=1,2,3,…,15)購買這四種新產(chǎn)品的情況,記錄如下(單位:件):
顧 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 |
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷售量(單位:件);
(Ⅱ)為推廣新產(chǎn)品,超市向購買兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷售業(yè)績,應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng) ,公比 的等比數(shù)列.設(shè) (n∈N*). (Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設(shè)cn=an+b2n , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+4|﹣|x﹣1|.
(1)解不等式f(x)>3;
(2)若不等式f(x)+1≤4a﹣5×2a有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , Sm﹣1=13,Sm=0,Sm+1=﹣15.其中m∈N*且m≥2,則數(shù)列{ }的前n項(xiàng)和的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com