已知p:-2≤
4-x
3
≤2,q:(x-1-m)(x-1+m)≤0,(m>0).¬p是¬q的必要不充分條件,求m的范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:計(jì)算題,簡(jiǎn)易邏輯
分析:首先化簡(jiǎn)P,q及¬p是¬q的必要不充分條件,而后求解.
解答: 解:-2≤
4-x
3
≤2可化簡(jiǎn)為-2≤x≤10,
(x-1-m)(x-1+m)≤0,(m>0)可化簡(jiǎn)為1-m≤x≤1+m.
∵¬p是¬q的必要不充分條件,
∴q是p的充分不必要條件,
1-m≥-2
1+m<10
1+m≤10
1-m>-2

解得,0<m≤3.
即m的范圍為0<m≤3.
點(diǎn)評(píng):本題考查了必要條件與充分條件的判斷及條件的化簡(jiǎn),注意命題之間的轉(zhuǎn)化,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
2
x
+a(2-lnx)(a∈R),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=1+i,如果z2+az+b=(1-i)(1-z),求實(shí)數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí),f(x)>0,且f(x•y)=f(x)+f(y).
(1)求f(1);
(2)證明f(x)在定義域上是增函數(shù);
(3)如果f(
1
6
)=-1,求滿足不等式f(x+2)-f(
1
x+3
)≥2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象,兩條相鄰對(duì)稱軸的距離為
π
2
,且圖象上一個(gè)最高點(diǎn)的坐標(biāo)為(
π
6
,2).
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的對(duì)稱中心坐標(biāo)和對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
(1)f(x)=ex•(cosx+sinx);
(2)f(x)=
2sinx
1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,△PAB是等邊三角形,E、F、G分別是AB、PD、PC的中點(diǎn).
(1)求證:FG∥平面PAB;
(2)求證:平面PEC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三形的三個(gè)頂點(diǎn)A(4,0),B(6,7),C(0,3);
(1)求BC邊的垂直平分線的方程;
(2)求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=2”是“函數(shù)f(x)=x-m在區(qū)間[2,+∞)上為增函數(shù)”的
 
條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案