【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=BAD=120°,E,F分別為PDBD的中點,且

1)求證:平面PAD⊥平面ABCD;

2)求銳二面角E-AC-D的余弦值.

【答案】(1)見解析;(2)

【解析】

1)先過PPOAD,再通過平幾知識計算得POBO,利用線面垂直判定定理得PO⊥平面ABCD,再根據(jù)面面垂直判定定理得結(jié)果,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),列方程組解得平面ACE的一個法向量,根據(jù)向量數(shù)量積得向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.

1)過PPOAD,垂足為O,連結(jié)AO,BO,

由∠PAD=120°,得∠PAO=60°,

∴在RtPAO中,PO=PAsinPAO=2sin60°=2×=

∵∠BAO=120°,∴∠BAO=60°,AO=AO,∴△PAO≌△BAO,∴BO=PO=,

EF分別是PABD的中點,EF=,∴EFPBD的中位線,

PB=2EF=2×=

PB2=PO2+BO2,∴POBO,∵AD∩BO=O,∴PO⊥平面ABCD,

PO平面PAD,∴平面PAD⊥平面ABCD

2)以O為原點,OBx軸,ODy軸,OPz軸,建立空間直角坐標(biāo)系,

A0,1,0),P00,),B,00),D0,30),

E0,),F,),=0,),=,0),

易得平面ABCD的一個法向量=0,0,1),

設(shè)平面ACE的法向量=x,y,z),則,

x=1,得=1,-,1),

設(shè)銳二面角的平面角的大小為θ,則cosθ=|cos|==,

∴銳二面角E-AC-D的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】博覽會安排了分別標(biāo)有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,設(shè)直線,其中,給出下列結(jié)論:

①直線的方向向量與向量共線;

②若,則直線與直線的夾角為;

③直線與直線)一定平行;

寫出所有真命題的序號________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別是、,左、右兩頂點分別是、,弦ABCD所在直線分別平行于x軸與y軸,線段BA的延長線與線段CD相交于點如圖).

的一條漸近線的一個方向向量,試求的兩漸近線的夾角;

,,,試求雙曲線的方程;

的條件下,且,點C與雙曲線的頂點不重合,直線和直線與直線l分別相交于點MN,試問:以線段MN為直徑的圓是否恒經(jīng)過定點?若是,請求出定點的坐標(biāo);若不是,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,89,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標(biāo)準(zhǔn)為20元.

(1)設(shè)日收費為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點,.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點分別為,是橢圓在第一象限內(nèi)的一點,并滿足,過作傾斜角互補的兩直線、分別交橢圓于、兩點.

1)求點坐標(biāo);

2)當(dāng)直線經(jīng)過點時,求直線的方程;

3)求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)購買某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請銷售儀器的企業(yè)派工程師進(jìn)行維修,因為考慮到人力、成本等多方面的原因,銷售儀器的企業(yè)提供以下購買儀器維修服務(wù)的條件:在購買儀器時,可以直接購買儀器維修服務(wù),維修一次1000元;在儀器使用期間,如果維修服務(wù)次數(shù)不夠再次購買,則需要每次1500元..現(xiàn)需決策在購買儀器的同時購買幾次儀器維修服務(wù),為此搜集并整理了500臺這種機器在使用期內(nèi)需要維修的次數(shù),得到如下表格:

維修次數(shù)

5

6

7

8

9

頻數(shù)(臺)

50

100

150

100

100

表示一臺儀器使用期內(nèi)維修的次數(shù),表示一臺儀器使用期內(nèi)維修所需要的費用,表示購買儀器的同時購買的維修服務(wù)的次數(shù).

(1)若,求的函數(shù)關(guān)系式;

(2)以這500臺儀器使用期內(nèi)維修次數(shù)的頻率代替一臺儀器維修次數(shù)發(fā)生的概率,求的概率.

(3)假設(shè)購買這500臺儀器的同時每臺都購買7次維修服務(wù),或每臺都購買8次維修服務(wù),請分別計算這500臺儀器在購買維修服務(wù)所需要費用的平均數(shù),以此為決策依據(jù),判斷購買7次還是8次維修服務(wù)?

查看答案和解析>>

同步練習(xí)冊答案