【題目】如圖,在直三棱柱ABC-A1B1C1中,AA1ABAC2,AB⊥AC,M是棱BC的中點點P在線段A1B上.
(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大;
(2)若是的中點,直線與平面所成角的正弦值為,求線段BP的長度.
科目:高中數(shù)學 來源: 題型:
【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有
A. 24種B. 30種C. 32種D. 36種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為建設美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標系xOy(如圖所示).景觀湖的邊界曲線符合函數(shù)模型.園區(qū)服務中心P在x軸正半軸上,PO=百米.
(1)若在點O和景觀湖邊界曲線上一點M之間修建一條休閑長廊OM,求OM的最短長度;
(2)若在線段DE上設置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求的值;
(2)設,試討論函數(shù)的單調(diào)性;
(3)當時,若存在正實數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(且)在區(qū)間上的最大值與最小值之和為,,其中.
(1)直接寫出的解析式和單調(diào)性;
(2)若對恒成立,求實數(shù)的取值范圍;
(3)設,若,使得對,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是由個有序實數(shù)構成的一個數(shù)組,記作:.其中稱為數(shù)組的“元”,為的下標.如果數(shù)組中的每個“元”都來自數(shù)組中不同下標的“元”則稱為的子數(shù)組.定義兩個數(shù)組,的關系數(shù)為.
(1)若,,設是的含有兩個“元”的子數(shù)組,求的最大值及此時的數(shù)組;
(2)若,,且,為的含有三個“元”的子數(shù)組,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,按分層抽樣的方法,在我市所有“移動支付達人”中,隨機抽取6名用戶
求抽取的6名用戶中,男女用戶各多少人;
② 從這6名用戶中抽取2人,求既有男“移動支付達人”又有女“移動支付達人”的概率.
(2)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,填寫下表,問能否在犯錯誤概率不超過0.01的前提下,認為“移動支付活躍用戶”與性別有關?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
非移動支付活躍用戶 | 移動支付活躍用戶 | 合計 | |
男 | |||
女 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有
A.5種B.10種
C.20種D.120種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com