分析 (1)分類討論,求出函數(shù)的最小值,即可求a;
(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可求p2+q2+r2的最小值.
解答 解:(1)x≤-2時,f(x)=-$\frac{3}{2}$x-1≥2;
-2<x<0時,f(x)=-$\frac{1}{2}$x+1∈(1,2);
x≥0時,f(x)=$\frac{3}{2}$x+1≥1
∴f(x)的最小值為1,即a=1;
(2)由(1)知,p+q+r=3,又p,q,r為正實數(shù),
∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2
=(p+q+r)2=32=9,
即p2+q2+r2≥3,∴p2+q2+r2的最小值為3.
點評 本題主要考查絕對值不等式、柯西不等式等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{512}$ | B. | -$\frac{341}{512}$ | C. | $\frac{1}{1024}$ | D. | $\frac{1}{2048}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1.5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-|x-1| | B. | y=x2-2x+4 | C. | y=ln(x+2) | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 簡單隨機抽樣 | B. | 系統(tǒng)抽樣 | C. | 分層抽樣 | D. | 抽簽法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com