分析 (1)設(shè)等差數(shù)列{an}的公差為d≥0,數(shù)列{bn}的公比為q;從而可得$\left\{\begin{array}{l}{q(6+d)=16}\\{{q}^{2}(9+3d)=60}\end{array}\right.$,從而解得;
(2)由(1)知Sn=n(n+2),從而化簡(jiǎn)并利用裂項(xiàng)求和法求和即可.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d≥0,數(shù)列{bn}的公比為q;
則Sn=3n+$\frac{n(n-1)}{2}$d,bn=qn-1,
故$\left\{\begin{array}{l}{q(6+d)=16}\\{{q}^{2}(9+3d)=60}\end{array}\right.$,
解得,q=2,d=2;
故an=3+2(n-1)=2n+1,bn=2n-1,
(2)由(1)知,Sn=n(n+2),
故$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
故$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)+…+$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<$\frac{3}{4}$,
故m≥$\frac{3}{4}$,
故m的最小值為$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì)的應(yīng)用,同時(shí)考查了方程思想與裂項(xiàng)求和法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [6,7) | B. | (1,2]∪(5,6)∪[7,10) | C. | (1,6) | D. | (1,2]∪(5,6]∪(7,10) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com