將數(shù)列{an}中的所有項按每一行比上一行多一項的規(guī)則排成如數(shù)表:記表中的第一列數(shù)a1,a2,a4
a7,…構成的數(shù)列為{bn},b1=a1=1.Sn為數(shù)列{bn}的前n項和,且滿足bn=
Sn2
Sn-2
(n≥2)

(1)證明:
1
Sn
-
1
Sn-1
=
1
2
(n≥2)
;
(2)求數(shù)列{bn}的通項公式;
(3)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構成等比數(shù)列,且公比為同一個正數(shù).當a94=-
9
105
時,求上表中第k(k≥3)行所有項的和.
分析:(1)由題意所給的已知等式特點應考慮應用已知數(shù)列的前n項和求其通項這一公式來尋求出路,得到Sn與S、Sn-1之間的遞推關系,即可證明所證結果;
(2)利用(1)得到的關系式,先求出Sn的通項公式,即可利用bn=Sn-Sn-1,求{bn}的通項公式;
(3)由題意第一列數(shù)a1,a2,a4,a7,…構成的數(shù)列為{bn},b1=a1=1,又已知{bn}的通項公式和a81的值,應該現(xiàn)有規(guī)律判斷這一向位于圖示中的具體位置,有從第三行起,第一行中的數(shù)按從左到右的順序均構成等比數(shù)列,且公比為同一個正數(shù)進而求解.
解答:解:(1)證明:由已知,bn=
Sn2
Sn-2
(n≥2)
,所以,當n≥2時,
2bn
bnSn-
S
2
n
=1
,
又Sn=b1+b2+…+bn,
所以
2(Sn-Sn-1)
(Sn-Sn-1)Sn-
S
2
n
=1
2(Sn-Sn-1)
-Sn-1Sn
=1
1
Sn
-
1
Sn-1
=
1
2
,
(2)因為S1=b1=a1=1.所以數(shù)列{
1
Sn
}
是首項為1,公差為
1
2
的等差數(shù)列.
由上可知
1
Sn
=1+
1
2
(n-1)=
n+1
2
,Sn=
2
n+1

所以當n≥2時,bn=Sn-Sn-1=
2
n+1
-
2
n
=-
2
n(n+1)

因此bn=
1,n=1
-
2
n(n+1)
,n≥2

(3)設上表中從第三行起,每行的公比都為q,且q>0.
因為1+2+…+12+13=
14×13
2
=91
,
所以表中第1行至第13行共含有數(shù)列{an}的前91項,故a94在表中第14行第三列,
因此a94=b14q2=-
9
105
.又b14=-
2
14×15
,所以q=3.
記表中第k(k≥3)行所有項的和為S,
S=
bk(1-qk)
1-q
=-
2
k(k+1)
(1-3k)
1-3
=
1
k(k+1)
(1-3k)(k≥3)
點評:本題重點考查了數(shù)列中的已知前n項的和,求解通項公式,還考查了等差數(shù)的定義,考查了由題意及圖形準確找規(guī)律,還考查了等比數(shù)列的通向公式及有數(shù)列通向求其所有項和,同時還考查了方程的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)將數(shù)列{an}中的所有項按每一行比上一行多一項的規(guī)則排成如下表:
記表中的第一列數(shù)a1,a2,a4,a7,…,構成的數(shù)列為{bn},b1=a1=1,Sn為數(shù)列{bn}的前n項和,且滿足
2bn
bnSn-
S
2
n
=1(n≥2)

(1)求證數(shù)列{
1
Sn
}
成等差數(shù)列,并求數(shù)列{bn}的通項公式;
(2)上表中,若a81項所在行的數(shù)按從左到右的順序構成等比數(shù)列,且公比q為正數(shù),求當a81=-
4
91
時,公比q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知整數(shù)數(shù)列{an}滿足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求數(shù)列{an}的通項公式;
(2)將數(shù)列{an}中的所有項依次按如圖所示的規(guī)律循環(huán)地排成如下三角形數(shù)表:
精英家教網(wǎng)

依次計算各個三角形數(shù)表內(nèi)各行中的各數(shù)之和,設由這些和按原來行的前后順序構成的數(shù)列為{bn},求b5+b100的值;
(3)令cn=2+ban+b•2an-1(b為大于等于3的正整數(shù)),問數(shù)列{cn}中是否存在連續(xù)三項成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將數(shù)列{an}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表.記表中第一列數(shù)a1,a2,a4,a7,…構成的數(shù)列為{bn},b1=a1=1.Sn為數(shù)列{bn}的前n項和,且滿足2bn=bnSn-Sn2(n≥2,n∈N*).
(1)證明數(shù)列{
1
Sn
}是等差數(shù)列,并求數(shù)列{bn}的通項公式;
(2)圖中,若從第三行起,每一行中的數(shù)按從左到右的順序構成等比數(shù)列,且公比為同一個正數(shù).當a81=-
4
91
時,求上表中第k(k≥3)行所有數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將數(shù)列{an}中的所有項按每一行比上一行多一項的規(guī)則排成如下表:
記表中的第一列數(shù)a1,a2,a4,a7,…,構成的數(shù)列為{bn},b1=a1=1,Sn為數(shù)列{bn}的前n項和,且滿足數(shù)學公式
(1)求證數(shù)列數(shù)學公式成等差數(shù)列,并求數(shù)列{bn}的通項公式;
(2)上表中,若a81項所在行的數(shù)按從左到右的順序構成等比數(shù)列,且公比q為正數(shù),求當數(shù)學公式時,公比q的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省淮安市洪澤中學高考數(shù)學模擬試卷(3)(解析版) 題型:解答題

已知整數(shù)數(shù)列{an}滿足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求數(shù)列{an}的通項公式;
(2)將數(shù)列{an}中的所有項依次按如圖所示的規(guī)律循環(huán)地排成如下三角形數(shù)表:


依次計算各個三角形數(shù)表內(nèi)各行中的各數(shù)之和,設由這些和按原來行的前后順序構成的數(shù)列為{bn},求b5+b100的值;
(3)令(b為大于等于3的正整數(shù)),問數(shù)列{cn}中是否存在連續(xù)三項成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案