8.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2•a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則S6=( 。
A.35B.33C.31D.$\frac{63}{2}$

分析 由題意可得首項(xiàng)和公比的方程組,解方程組代入求和公式計(jì)算可得.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a2•a3=2a1,a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,
∴a12q3=2a1,a1q3(1+2q3)=$\frac{5}{4}$×2,
解得a1=16,q=$\frac{1}{2}$,
∴S6=$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=$\frac{16(1-\frac{1}{{2}^{6}})}{1-\frac{1}{2}}$=$\frac{63}{2}$,
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和性質(zhì),求出數(shù)列的首項(xiàng)和公比是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=4-$\frac{a}{{e}^{x}}$與函數(shù)y=2x有兩個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=ax-5+31(a≠0)的圖象過(guò)定點(diǎn)P,且點(diǎn)P在指數(shù)函數(shù)f(x)=bx的圖象上,則f(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.計(jì)算:(1)${log_{\sqrt{2}}}2\sqrt{2}+{log_2}3•{log_3}\frac{1}{2}$=2;
(2)設(shè)f(x)=$\left\{\begin{array}{l}{2^{x+1}}(x≥0)\\ f(x+1)+2(x<0)\end{array}$,則$f(-\frac{2015}{2})$=$2\sqrt{2}+2016$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.△ABC的三頂點(diǎn)分別是A(-8,5),B(4,-2),C(-6,3),則BC邊上的高所在的直線的一般式方程是2x-y+21=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求下列各式的值.
(Ⅰ)設(shè)${x}^{\frac{1}{2}}+{x}^{{-}^{\frac{1}{2}}}=3$,求x+x-1
(Ⅱ)(lg2)2+lg5•lg20+($\root{3}{2}×\sqrt{3})^{6}+(2\frac{1}{4})^{\frac{1}{2}}-0.{3}^{0}-1{6}^{-\frac{3}{4}}$6+$(2\frac{1}{4})^{\frac{1}{2}}$-0.30-$1{6}^{{-}^{\frac{3}{4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x|-3(-3≤x≤3),
(1)用分段函數(shù)表示f(x)并作出其圖象;
(2)指出函數(shù)f(x)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求值
(1)log${\;}_{\sqrt{3}}$2-log3$\frac{32}{9}$+$\frac{1}{lo{g}_{8}3}$-5${\;}^{lo{g}_{5}3}$;
(2)已知2x=3y,且$\frac{1}{x}$+$\frac{1}{y}$=1,求x,y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,若函數(shù)g(x)=f(x)-k有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是[0,4).

查看答案和解析>>

同步練習(xí)冊(cè)答案