【題目】已知集合,且.
(1)證明:若,則是偶數(shù);
(2)設(shè),且,求實(shí)數(shù)的值;
(3)設(shè),求證:;并求滿足的的值.
【答案】(1)證明見解析;(2);(3)證明見解析,.
【解析】
(1)根據(jù),將代入化簡,結(jié)合即可證明.
(2)根據(jù)題意,設(shè),結(jié)合(1)并分類討論即可求得的值, 代入求得的值,討論并舍去不符合要求的的值,即可得實(shí)數(shù)的值;
(3)根據(jù)題意,設(shè)代入化簡,并結(jié)合即可證明;化簡不等式,結(jié)合(2)可知,在范圍內(nèi)的值只能是,即,即可求得的值.
(1)證明: 若,則
所以
因?yàn)?/span>
所以原式
因?yàn)?/span>
所以偶數(shù)
原式得證
(2)因?yàn)?/span>,且
則,所以
設(shè),
由(1)可知,即
所以或
當(dāng)時,代入可得
此時,不滿足,所以不成立
當(dāng)時,代入解得,若,則,不滿足,所以不成立;若,則,滿足
綜上,可知
(3)證明:因?yàn)?/span>,所以可設(shè)且
則
代入
即成立,原式得證
對于,不等式同時除以可得
由(2)可知, 在范圍內(nèi),
所以
即
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十七世紀(jì)英國著名數(shù)學(xué)家、物理學(xué)家牛頓創(chuàng)立的求方程近似解的牛頓迭代法,相較于二分法更具優(yōu)勢,如圖給出的是利用牛頓迭代法求方程x2=6的正的近似解的程序框圖,若輸入a=2,=0.02,則輸出的結(jié)果為( )
A.3
B.2.5
C.2.45
D.2.4495
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),M(x1 , y1),N(x2 , y2)是橢圓 + =1上的點(diǎn),且x1x2+2y1y2=0,設(shè)動點(diǎn)P滿足 = +2
(Ⅰ)求動點(diǎn)P的軌跡C的方程;
(Ⅱ)若直線l:y=x+m(m≠0)與曲線C交于A,B兩點(diǎn),求三角形OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間[﹣5,5]內(nèi)隨機(jī)地取出一個數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個解的概率大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F(xiàn)為AD的中點(diǎn),PD⊥BF.
(1)求證:AD⊥PB;
(2)若菱形ABCD的邊長為6,PA=5,求四面體PBCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1的底面是邊長為4的正三角形,B,E,F(xiàn)分別是AA1 , CC1的中點(diǎn),且BE⊥B1F.
(Ⅰ)求證:B1F⊥EC1;
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為( )
A.( , ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】ABC中,D是BC上的點(diǎn),AD平分BAC,ABD面積是ADC面積的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com