已知函數(shù)f(x)=x3+ax2+x-1.
(Ⅰ)當(dāng)a=-2時,求函數(shù)f(x)的極大值與極小值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間.
分析:(I)先求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)等于0求出導(dǎo)數(shù)的零點,再令導(dǎo)數(shù)大于0求出單調(diào)增區(qū)間,導(dǎo)數(shù)小于0求出函數(shù)的減區(qū)間,再由極值的定義,導(dǎo)數(shù)零點左增右減為極大值點,左減右增為極小值點,求出相應(yīng)極值即可;
(II)先求出f(x)的導(dǎo)數(shù),根據(jù)f′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,f′(x)<0求得的區(qū)間是單調(diào)減區(qū)間,因為在函數(shù)式中含字母系數(shù)a,要對a的取值進行分類討論.
解答:解:(I)當(dāng)a=-2時,f(x)=x3-2x2+x-1,f′(x)=3x2-4x+1,令f′(x)=0,解得x1=-3,x2=1,
當(dāng)f′(x)>0時,x<
1
3
或x>1;當(dāng)f′(x)<0時,
1
3
<x<1

當(dāng)x變化時,x與f′(x)、f(x)的變化情況如下:
x (-∞,
1
3
)
1
3
(
1
3
,1)
1 (1,+∞)
f'(x) + 0 - 0 +
f(x) -
23
27
-1
所以當(dāng)x=
1
3
時,f(x)有極大值-
23
27
;當(dāng)x=1時,f(x)有極小值-1.
(II)f′(x)=3x2+2ax+1
當(dāng)-
3
≤a≤
3
時,函數(shù)f(x)=x3+ax2+x-1的單調(diào)遞增區(qū)間為R;
當(dāng)a<-
3
3
<a
時,函數(shù)f(x)=x3+ax2+x-1的單調(diào)遞增區(qū)間為(-∞,
-a-
a2-3
3
),(
-a+
a2-3
3
,+∞)
,單調(diào)遞減區(qū)間為(
-a-
a2-3
3
,
-a+
a2-3
3
)
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,求解本題關(guān)鍵是記憶好求導(dǎo)的公式以及極值的定義,要會根據(jù)函數(shù)的增減性得到函數(shù)的極值,本題還涉及了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等知識,考查運算求解能力.要求會根據(jù)導(dǎo)函數(shù)的正負判斷得到函數(shù)的單調(diào)區(qū)間,對含有字母參數(shù)的問題能夠運用分類討論的思想方法.屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案