11.已知平面向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,5),$\overrightarrow{c}$=(m,3),且($\overrightarrow{a}$+$\overrightarrow{c}$)∥($\overrightarrow{a}$-$\overrightarrow$),則m=( 。
A.$\frac{{-3+\sqrt{17}}}{2}$B.$\frac{{3-\sqrt{17}}}{2}$C.$\frac{{-3±\sqrt{17}}}{2}$D.$\frac{{3±\sqrt{17}}}{2}$

分析 根據(jù)題意,由向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$的坐標(biāo)計算可得($\overrightarrow{a}$+$\overrightarrow{c}$)、($\overrightarrow{a}$-$\overrightarrow$)的坐標(biāo),進而由向量平行的坐標(biāo)表示方法可得(m+1)×(m-5)=(m+3)×(-1),解可得m的值,即可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,5),$\overrightarrow{c}$=(m,3),
則 $\overrightarrow a+\overrightarrow c=(m+1,m+3),\overrightarrow a-\overrightarrow b=(-1,m-5)$;
若($\overrightarrow{a}$+$\overrightarrow{c}$)∥($\overrightarrow{a}$-$\overrightarrow$),
(m+1)×(m-5)=(m+3)×(-1)
解可得:$m=\frac{{3±\sqrt{17}}}{2}$;
故選:D.

點評 本題考查向量平行的坐標(biāo)表示,關(guān)鍵是求出向量($\overrightarrow{a}$+$\overrightarrow{c}$)、($\overrightarrow{a}$-$\overrightarrow$)的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,幾何體EF-ABCD中,DE⊥平面ABCD,CDEF是正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB的腰長為$2\sqrt{2}$的等腰直角三角形.
(Ⅰ)求證:BC⊥AF;
(Ⅱ)求幾何體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)$y=sin({2x-\frac{2π}{3}})$的圖象向左平移$\frac{π}{3}$個單位所得到的圖象的解析式為( 。
A..y=sin2xB..y=-sin2xC..y=cos2xD.y=-2cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某教室一天的溫度(單位:℃)隨時間(單位:h)變化近似地滿足函數(shù)關(guān)系:$f(t)=20-2sin({\frac{π}{24}t-\frac{π}{6}})$,t∈[0,24],則該天教室的最大溫差為3℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.給出以下命題:
(1)“0<t<1”是“曲線$\frac{x^2}{t}+\frac{y^2}{1-t}=1$表示橢圓”的充要條件
(2)命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
(3)Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜邊AC上的點,|CD|=|CB|.以B為起點任作一條射線BE交AC于E點,則E點落在線段CD上的概率是$\frac{{\sqrt{3}}}{2}$
(4)設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6
則正確命題有( 。﹤.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四邊形ABCD是邊長為$\sqrt{2}$的正方形,CG⊥平面ABCD,DE∥BF∥CG,$DE=BF=\frac{3}{5}CG$.P為線段EF的中點,AP與平面ABCD所成角為60°.在線段CG上取一點H,使得$GH=\frac{3}{5}CG$.
(Ⅰ)求證:PH⊥平面AEF;
(Ⅱ)求多面體ABDEFH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直線l過點$P(\frac{4}{3},2)$,且與x軸,y軸的正方向分別交于A,B兩點,O為坐標(biāo)原點,當(dāng)△AOB的面積為6時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}}$)-|${\frac{x}{e}}$|,則使得f(x+1)<f(2x-1)的x的范圍是( 。
A.(0,2)B.(-∞,0)C.(-∞,0)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知當(dāng)x=θ時,函數(shù)f(x)=2sinx-cosx取得最大值,則sin2θ=( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案