【題目】在平面直角坐標系中,過點作傾斜角為的直線,以原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,將曲線上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,直線與曲線交于不同的兩點.
(1)求直線的參數(shù)方程和曲線的普通方程;
(2)求的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面為矩形,平面平面,點在線段上,且平面.
(1)求證:平面;
(2)若點是線段上靠近的三等分點,點在線段上,且平面,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓C:() 經(jīng)過點,設橢圓C的左頂點為A,右焦點為F,右準線于x軸交于點M,且F為線段AM的中點,
(1)求橢圓的標準方程;
(2)若過點A的直線l與橢圓C交于另一點P(P在x軸上方),直線PF與橢圓C相交于另一點Q,且直線l與OQ垂直,求直線PQ的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知邊長為2的正三角形ABE所在的平面與菱形ABCD所在的平面垂直,且,點F是BC上一點,且.
(1)當時,證明:;
(2)是否存在一個常數(shù)k,使得三棱錐的體積等于四棱錐的體積的,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,分別為的上、下頂點且為外的動點,且到上點的最近距離為1.
(1)求橢圓的標準方程;
(2)當時,設直線分別與橢圓交于兩點,若的面積是的面積的倍,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | ||
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)若采用樣本估計總體的方式,試估計小明的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步時被系統(tǒng)評定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,又在直角坐標系中,曲線的參數(shù)方程為(t為參數(shù)).
(1)求曲線的直角坐標方程和曲線的普通方程;
(2)已知點在曲線上,點Q在曲線上,若的最小值為,求此時點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為等差數(shù)列的前項和,且,.
(1)求數(shù)列的通項公式;
(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com