【題目】在平面直角坐標系中,過點作傾斜角為的直線,以原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,將曲線上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,直線與曲線交于不同的兩點.

1)求直線的參數(shù)方程和曲線的普通方程;

2)求的值.

【答案】1)直線的參數(shù)方程為,曲線的普通方程為;(2

【解析】

1)根據(jù)直線參數(shù)方程的知識求得直線的參數(shù)方程,將的極坐標方程轉(zhuǎn)化為直角坐標方程,然后通過圖像變換的知識求得的普通方程.

2)將直線的參數(shù)方程代入曲線的普通方程,化簡后寫出韋達定理,根據(jù)直線參數(shù)的幾何意義,求得的值.

直線的參數(shù)方程為

兩邊平方得,所以曲線的直角坐標方程式,

曲線的方程為,.

(2)直線的參數(shù)方程為,代入曲線的方程得:

對應得參數(shù)分別為,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為矩形,平面平面,點在線段上,且平面.

1)求證:平面;

2)若點是線段上靠近的三等分點,點在線段上,且平面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓C 經(jīng)過點,設橢圓C的左頂點為A,右焦點為F,右準線于x軸交于點M,且F為線段AM的中點,

1)求橢圓的標準方程;

2)若過點A的直線l與橢圓C交于另一點PPx軸上方),直線PF與橢圓C相交于另一點Q,且直線lOQ垂直,求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知邊長為2的正三角形ABE所在的平面與菱形ABCD所在的平面垂直,且,點FBC上一點,且

1)當時,證明:;

2)是否存在一個常數(shù)k,使得三棱錐的體積等于四棱錐的體積的,若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為分別為的上、下頂點且外的動點,且上點的最近距離為1

1)求橢圓的標準方程;

2)當時,設直線分別與橢圓交于兩點,若的面積是的面積的倍,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計總體的方式,試估計小明的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步時被系統(tǒng)評定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計

總計

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,又在直角坐標系中,曲線的參數(shù)方程為t為參數(shù)).

1)求曲線的直角坐標方程和曲線的普通方程;

2)已知點在曲線上,點Q在曲線上,若的最小值為,求此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為等差數(shù)列的前項和,且

1)求數(shù)列的通項公式;

2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, 平面, , 分別為, 的中點.

(1)求證: 平面

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案