19.若$a={(\frac{1}{2})^{10}}$,$b={(\frac{1}{5})^{-\frac{1}{2}}}$,$c={log_{\frac{1}{5}}}10$,則a,b,c大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出大小關(guān)系.

解答 解:∵$a={(\frac{1}{2})^{10}}$∈(0,1),$b={(\frac{1}{5})^{-\frac{1}{2}}}$>1,$c={log_{\frac{1}{5}}}10$<0,
∴b>a>c.
故選:D.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-e-x
(Ⅰ)求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)當(dāng)x∈(0,1)時,不等式ex-e-x>k(x+$\frac{{x}^{3}}{6}$)恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.a(chǎn)、b、c是三角形ABC的三邊,設(shè)向量$\overrightarrow P=(a+c,b),\overrightarrow q=(b-a,c-a)$,若$\overrightarrow P∥\overrightarrow q$,則角C大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式-6x2-x+2<0的解集是$({-∞,-\frac{2}{3}})∪({\frac{1}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若復(fù)數(shù)z滿足|z|=1,則|($\overline{z}$+i)(z-i)|的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知中心在原點,對稱軸為坐標(biāo)軸的橢圓C的一個焦點F在拋物線y2=4x的準(zhǔn)線上,且橢圓C過點$P(1,\frac{3}{2})$,直線與橢圓C交于A,B兩個不同點.
(1)求橢圓C的方程;
(2)若直線的斜率為$\frac{1}{2}$,且不過點P,設(shè)直線PA,PB的斜率分別為k1,k2,求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\frac{-4x+5}{x+1}$,$g(x)=asin(\frac{π}{3}x)+2a$(a>0),若對任意x1∈[0,2],總存在x2∈[0,2],使g(x1)=f(x2)成立,則實數(shù)a的取值范圍是  $(0,\frac{5}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:糧倉開倉收糧,有人送來米1534石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒肉夾谷56粒,則這批米內(nèi)夾谷約為(  )
A.1365石B.338 石C.168石D.134石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求值$\frac{1+{i}^{3n}+{i}^{5n}+…+{i}^{25n}}{1•{i}^{3n}•{i}^{5n}•…•{i}^{25n}}$(n∈Z)

查看答案和解析>>

同步練習(xí)冊答案