【題目】已知橢圓: 上的任一點到焦點的距離最大值為3,離心率為

(1)求橢圓的標準方程;

(2)若為曲線上兩點, 為坐標原點,直線 的斜率分別為,,求直線被圓截得弦長的最大值及此時直線的方程.

【答案】(1)(2)見解析

【解析】試題分析:1橢圓上的任一點到焦點的距離最大值為,結合離心率的值即可得方程;

(2)設 ,直線與圓 的交點為,當直線軸時, ,易得當直線軸不垂直時,設直線的方程為,與橢圓聯(lián)立得, ,結合韋達定理可解得, 即可得最值.

試題解析:

(1)橢圓上的任一點到焦點的距離最大值為,又離心率為,

解得: ,進而得.

橢圓的方程為:

(2)設, ,直線與圓 的交點為

當直線軸時,

此時可求得

當直線軸不垂直時,設直線的方程為,

聯(lián)立,

,

,

所以 ,

,

此時

的圓心到直線的距離為,

所以

,

所以當時, 最大,最大值為,

綜合①②知,直線被圓 截得弦長的最大值為,

此時,直線的方程為

點睛: 本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某經銷商從外地水產養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結果如下圖:

(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35的小龍蝦”,求的估計值;

(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;

(3)為適應市場需求,了解這批小龍蝦的口感,該經銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(

按分層抽樣抽取10只,再隨機抽取3只品嘗,記為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左右焦點,為原點, 在橢圓上,線段軸的交點滿足.

(1)求橢圓的標準方程;

(2)過橢圓右焦點作直線交橢圓于兩點,交軸于點,若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解方程ln(2x+1)=ln(x2﹣2);
求函數(shù)f(x)=( 2x+2×( x(x≤﹣1)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修4—4:坐標系與參數(shù)方程

在直角坐標系xOy中,圓C的參數(shù)方程為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系.

1)求圓C的極坐標方程;

2)直線的極坐標方程是,射線與圓C的交點為O、P,與直線的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2bx+5(b∈R).
(1)若b=2,試解不等式f(x)<10;
(2)若f(x)在區(qū)間[﹣4,﹣2]上的最小值為﹣11,試求b的值;
(3)若|f(x)﹣5|≤1在區(qū)間(0,1)上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).

(1)假設,現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?

(2)假設數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時千米的速度勻速行駛千米().假設汽油的價格是每升元,而汽車每小時耗油升,司機的工資是每小時元.

(1)求這次行車總費用關于的表達式;

(2)當為何值時,這次行車的總費用最低?并求出最低費用的值.

查看答案和解析>>

同步練習冊答案