已知.
(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.
(1);(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.
解析試題分析:(1)當(dāng)時(shí),先求出,根據(jù)導(dǎo)數(shù)的幾何意義可得切線(xiàn)的斜率,進(jìn)而計(jì)算出確定切點(diǎn)坐標(biāo),最后由點(diǎn)斜式即可寫(xiě)出切線(xiàn)的方程并化成直線(xiàn)方程的一般式;(2)先求導(dǎo)并進(jìn)行因式分解,求出的兩個(gè)解 或,針對(duì)兩根的大小進(jìn)行分類(lèi)討論即分、兩類(lèi)進(jìn)行討論,結(jié)合二次函數(shù)的圖像與性質(zhì)得出函數(shù)的單調(diào)區(qū)間,最后再將所討論的結(jié)果進(jìn)行闡述,問(wèn)題即可解決.
試題解析:(1) ∵ ∴∴ 2分
∴ , 又,所以切點(diǎn)坐標(biāo)為
∴ 所求切線(xiàn)方程為,即 5分
(2)
由 得 或 7分
①當(dāng)時(shí),由, 得,由, 得或 9分
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和 10分
②當(dāng)時(shí),由,得,由,得或 12分
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和 13分
綜上:當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;當(dāng)時(shí),的單調(diào)遞減區(qū)間為單調(diào)遞增區(qū)間為, 14分.
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.函數(shù)的單調(diào)性與導(dǎo)數(shù);3.分類(lèi)討論的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分15分)已知函數(shù)
(Ⅰ)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求的值;
(Ⅱ)記,,且.求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其圖象與軸交于,兩點(diǎn),且x1<x2.
(1)求的取值范圍;
(2)證明:(為函數(shù)的導(dǎo)函數(shù));
(3)設(shè)點(diǎn)C在函數(shù)的圖象上,且△ABC為等腰直角三角形,記,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若方程在上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的圖像與直線(xiàn)相切于點(diǎn).
(1)求的值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
巳知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)若在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)記,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量(單位:千克)與銷(xiāo)售價(jià)格(單位:元/千克)滿(mǎn)足關(guān)系式其中為常數(shù)。己知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線(xiàn),設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(、為常數(shù)),在時(shí)取得極值.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)數(shù)列滿(mǎn)足(且),,數(shù)列的前項(xiàng)和為,
求證:(,是自然對(duì)數(shù)的底).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com