【題目】已知向量
(1)若 垂直,求k的值;
(2)若 平行,求k的值.

【答案】
(1)解:∵向量

=(k,0)﹣(﹣2,1)=(k+2,﹣1),

=(1,0)+(﹣6,3)=(﹣5,3),

垂直,

∴( )( )=﹣5(k+2)﹣3=0,

解得


(2)解:∵ 平行,

,解得


【解析】(1)利用平面向理坐標(biāo)運(yùn)算法則先分別求出 ,再利用 垂直,能求出k的值.(2)利用 平行,結(jié)合向量平行的性質(zhì),能求出k的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)量積判斷兩個平面向量的垂直關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) ,g(x)=x3﹣x2﹣3.
(1)當(dāng)a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的 ,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.

(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(x+ )圖象上的所有點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼? 倍,所得函數(shù)為f(x),則函數(shù)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且 =(a,b+c),
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 、 表示向量 ;
(2)若AD⊥AB,求向量 、 夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱錐S﹣ABC中,△ABC是邊長為2的正三角形,平面SAC⊥平面ABC,SA=SC= ,M為AB的中點(diǎn).
(I)證明:AC⊥SB;
(Ⅱ)求點(diǎn)B到平面SCM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;

(2)若曲線 相交于兩點(diǎn), 的中點(diǎn)為,過點(diǎn)做曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域為開區(qū)間(a,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極大值點(diǎn)(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案