分析 (I)設(shè)等比數(shù)列{an}的公比為q>0,由a1=2,2a2+a3=30.可得2×2q+2×q2=30,解得q.
(II)bn+1=bn+an,b1=a2,可得:n≥2時,bn-bn-1=an-1=2×3n-2,b1=6.利用bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)即可得出.
解答 解:(I)設(shè)等比數(shù)列{an}的公比為q>0,∵a1=2,2a2+a3=30.
∴2×2q+2×q2=30,解得q=3.
∴an=2×3n-1.
(II)∵bn+1=bn+an,b1=a2,
∴n≥2時,bn-bn-1=an-1=2×3n-2,b1=6.
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=6+2[3-1+30+…+3n-2]
=6+2×$\frac{\frac{1}{3}({3}^{n-1}-1)}{3-1}$=$\frac{17}{3}$+3n-2.
點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式與求和公式、累加求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(4.5)<f(7)<f(6.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(7)<f(6.5)<f(4.5) | D. | f(4.5)<f(6.5)<f(7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在R上函數(shù)g(x),使得f(g(x))=x | B. | 存在R上函數(shù)g(x),使得g(f(x))=x | ||
C. | 存在R上函數(shù)g(x),使得f(g(x))=g(x) | D. | 存在R上函數(shù)g(x),使得f(g(x))=g(f(x)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,log5x<0 | B. | ¬p:?x∈R,log5x≤0 | C. | ¬p:?x∈R,log5x≤0 | D. | ¬p:?x∈R,log5x<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com