【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,點(diǎn)在橢圓.

1)求橢圓的方程;

2)若過橢圓的左焦點(diǎn)的直線與橢圓相交所得弦長(zhǎng)為,求直線的斜率;

3)過點(diǎn)的任意直線與橢圓交于兩點(diǎn),設(shè)點(diǎn)、到直線的距離分別為.,求的值.

【答案】1;(2;(3.

【解析】

1)利用長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,點(diǎn)在橢圓上,建立方程組求解;

2)聯(lián)立方程,結(jié)合弦長(zhǎng)可求直線的斜率;

3)把轉(zhuǎn)化為坐標(biāo)間的關(guān)系,結(jié)合韋達(dá)定理可求.

1)由題意,則方程化為,

因?yàn)辄c(diǎn)在橢圓上,所以,解得,

所以橢圓的方程為.

2)設(shè)直線的方程為,

聯(lián)立

設(shè)直線與橢圓相交于

,,

解得,故直線的斜率為.

3)當(dāng)直線的斜率不存在時(shí),恒成立;

當(dāng)直線的斜率為0時(shí),由,即;

當(dāng)直線的斜率存在且不為0時(shí),設(shè).

聯(lián)立,

設(shè),不妨設(shè)

,

因?yàn)?/span>,所以,即,

整理可得

解得.

綜上可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某共享單車經(jīng)營企業(yè)欲向甲市投放單車,為制定適宜的經(jīng)營策略,該企業(yè)首先在已投放單車的乙市進(jìn)行單車使用情況調(diào)查.調(diào)查過程分隨機(jī)問卷、整理分析及開座談會(huì)三個(gè)階段.在隨機(jī)問卷階段,A,B兩個(gè)調(diào)查小組分赴全市不同區(qū)域發(fā)放問卷并及時(shí)收回;在整理分析階段,兩個(gè)調(diào)查小組從所獲取的有效問卷中,針對(duì)15至45歲的人群,按比例隨機(jī)抽取了300份,進(jìn)行了數(shù)據(jù)統(tǒng)計(jì),具體情況如下表:

組別

年齡

A組統(tǒng)計(jì)結(jié)果

B組統(tǒng)計(jì)結(jié)果

經(jīng)常使用單車

偶爾使用單車

經(jīng)常使用單車

偶爾使用單車

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分層抽樣的方法從上述300人中按“年齡是否達(dá)到35歲”抽出一個(gè)容量為60人的樣本,再用分層抽樣的方法將“年齡達(dá)到35歲”的被抽個(gè)體數(shù)分配到“經(jīng)常使用單車”和“偶爾使用單車”中去.求這60人中“年齡達(dá)到35歲且偶爾使用單車”的人數(shù);

(2)從統(tǒng)計(jì)數(shù)據(jù)可直觀得出“是否經(jīng)常使用共享單車與年齡(記作歲)有關(guān)”的結(jié)論.在用獨(dú)立性檢驗(yàn)的方法說明該結(jié)論成立時(shí),為使犯錯(cuò)誤的概率盡可能小,年齡應(yīng)取25還是35?請(qǐng)通過比較的觀測(cè)值的大小加以說明.

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“斗拱”是中國古代建筑中特有的構(gòu)件,從最初的承重作用,到明清時(shí)期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構(gòu)架間,從枋上加的一層層探出成弓形的承重結(jié)構(gòu)叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )

A. B. C. 53 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的焦點(diǎn)和上項(xiàng)點(diǎn)分別為,我們稱為橢圓特征三角形”.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,且三角形的相似比即為橢圓的相似比. 若橢圓,直線

已知橢圓與橢圓是相似橢圓,求的值及橢圓與橢圓相似比;

求點(diǎn)到橢圓上點(diǎn)的最大距離;

如圖,設(shè)直線與橢圓相交于兩點(diǎn),與橢圓交于兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)?萍夹〗M在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn),設(shè)計(jì)方案如圖:航天器運(yùn)行(按順時(shí)針方向)的軌跡方程為,變軌(即航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以軸為對(duì)稱軸、為頂點(diǎn)的拋物線的實(shí)線部分,降落點(diǎn)為.觀測(cè)點(diǎn)同時(shí)跟蹤航天器.

1)求航天器變軌后的運(yùn)行軌跡所在的曲線方程;

2)試問:當(dāng)航天器在軸上方時(shí),觀測(cè)點(diǎn)、測(cè)得離航天器的距離分別為多少時(shí),應(yīng)向航天器發(fā)出變軌指令?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB外有一點(diǎn)C,∠ABC=60°,AB=200 km,汽車以80 km/h的速度由A向B行駛,同時(shí)摩托車以50 km/h的速度由B向C行駛,則運(yùn)動(dòng)開始________h后,兩車的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線:交拋物線兩點(diǎn),

(1)若的中點(diǎn)為,直線的斜率為,證明:為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

1)求函數(shù)的單調(diào)區(qū)間和最值;

2)當(dāng)時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案