A. | 異面直線AD與CB1角為60° | B. | BD∥平面CB1D1 | ||
C. | AC1⊥BD | D. | AC1⊥平面CB1D1 |
分析 由AD∥BC得出∠B1CB為異面直線AD與CB1所成的角,通過BD∥B1D1得出BD∥平面CB1D1,通過BD⊥平面ACC1得AC1⊥BD,由AC1⊥B1C,AC1⊥B1D1得出AC1⊥平面CB1D1.
解答 解:∵AD∥BC,∴∠B1CB為異面直線AD與CB1所成的角,
∵四邊形BCC1B1為正方形,∴∠B1CB=45°,
∴異面直線AD與CB1所成的角為45°,故A錯(cuò)誤;
∵BD∥B1D1,∴BD∥平面CB1D1,故B正確;
連接AC,則BD⊥AC,
又CC1⊥平面ABCD,BD?平面ABCD,
∴BD⊥CC1,又AC∩CC1=C,
∴BD⊥平面ACC1,又AC1?平面ACC1,
∴AC1⊥BD.故C正確;
連接BC1,則B1C⊥BC1,
又AB⊥平面BCC1B1,B1C?平面BCC1B1,
∴AB⊥B1C,又BC1∩AB=B,
∴B1C⊥平面ABC1,∴BC1⊥AC1,
同理可得B1D1⊥AC1,
∴AC1⊥平面CB1D1.故D正確.
故選:A.
點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判斷,空間角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 384 | B. | 768 | C. | -$\frac{3}{512}$ | D. | -$\frac{3}{1024}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16cm3 | B. | 20cm3 | C. | 24cm3 | D. | 28cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{8}{3}$,$\frac{28}{5}$) | B. | ($\frac{8}{3}$,$\frac{28}{5}$] | C. | ($\frac{8}{3}$,$\frac{18}{5}$) | D. | ($\frac{8}{3}$,$\frac{18}{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | (0,$\frac{1}{2e}$) | C. | [$\frac{ln3}{3}$,$\frac{1}{2e}$) | D. | [$\frac{ln3}{3}$,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com