【題目】設(shè)函數(shù)f(x)=log2x+ax+b(a>0),若存在實數(shù)b,使得對任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,則t的最小值是( )
A.2
B.1
C.
D.
【答案】D
【解析】解:函數(shù)f(x)=log2x+ax+b(a>0),
由y=log2x,y=ax+b在(0,+∞)遞增,
可得f(x)在(0,+∞)遞增,
由對任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,
可得﹣1﹣a≤f(x)≤1+a恒成立,
即有﹣1﹣a≤f(x)min=f(t)=log2t+at+b,①
1+a≥f(x)max=log2(t+2)+a(t+2)+b,
即為﹣1﹣a≤﹣log2(t+2)﹣a(t+2)﹣b,②
①+②可得﹣2﹣2a≤log2t+at+b﹣log2(t+2)﹣a(t+2)﹣b,
化為log2 ≥﹣2,
解得 ≥ ,
解得t≥ ,
則t的最小值為 ,
故選:D.
【考點精析】掌握函數(shù)的最值及其幾何意義是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ ,其中函數(shù)f(x)的圖象在點(1,f(1))處的切線方程為y=x﹣1.
(1)若a= ,求函數(shù)f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)證明:1+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】x,y 滿足約束條件 ,若 z=y﹣ax 取得最大值的最優(yōu)解不唯一,則實數(shù) a 的值為( )
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣3x+lnx,則f(x)在區(qū)間[ ,2]上的最小值為;當(dāng)f(x)取到最小值時,x= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中a>0且a≠1.若a= 時方程f(x)=b有兩個不同的實根,則實數(shù)b的取值范圍是;若f(x)的值域為[2,+∞),則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e﹣x﹣ .
(Ⅰ)證明:當(dāng)x∈[0,3]時, .
(Ⅱ)證明:當(dāng)x∈[2,3]時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是單位圓O和x軸正半軸的交點,P,Q是圓O上兩點,O為坐標(biāo)原點,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中點.
(1)求證:A1C∥平面BDC1;
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com