按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為a元,如果他賣出該產(chǎn)品的單價(jià)為m元,則他的滿意度為
m
m+a
;如果他買進(jìn)該產(chǎn)品的單價(jià)為n元,則他的滿意度為
a
n+a
.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為h1和h2,則他對(duì)這兩種交易的綜合滿意度為
h1h2
.現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為mA元和mB元,甲買進(jìn)A與賣出B的綜合滿意度為h,乙賣出A與買進(jìn)B的綜合滿意度為h
(1)求h和h關(guān)于mA、mB的表達(dá)式;當(dāng)mA=
3
5
mB
時(shí),求證:h=h;
(2)設(shè)mA=
3
5
mB
,當(dāng)mA、mB分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?
(3)記(2)中最大的綜合滿意度為h0,試問(wèn)能否適當(dāng)選取mA,mB的值,使得h≥h0和h≥h0同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由.
分析:(1)表示出甲和乙的滿意度,整理出最簡(jiǎn)形式,在條件mA=
3
5
mB
時(shí),表示出要證明的相等的兩個(gè)式子,得到兩個(gè)式子相等.
(2)在上一問(wèn)表示出的結(jié)果中,整理出關(guān)于變量的符合基本不等式的形式,利用基本不等式求出兩個(gè)人滿意度最大時(shí)的結(jié)果,并且寫出等號(hào)成立的條件.
(3)先寫出結(jié)論:不能由(2)知h0=
2
3
.因?yàn)閔h
4
9
,不能取到mA,mB的值,使得h≥h0和h≥h0同時(shí)成立,但等號(hào)不同時(shí)成立.?
解答:解:(1)甲:買進(jìn)A的滿意度為hA1=
12
mA+12
,賣出B的滿意度為hB1=
mB
mB+5

所以,甲買進(jìn)A與賣出B的綜合滿意度為h=
hA1hB1
=
12
mA+12
×
mB
mB+5
=
12mB
(mA+12)( mB+5)

乙:賣出A的滿意度為:hA2=
mA
mA+3
,買進(jìn)B的滿意度為:hB2=
20
mB+20

所以,乙賣出A與買進(jìn)B的綜合滿意度h=
hA2hB2
=
mA
mA+3
×
20
mB+20
=
20mA
(mA+3)( mB+20)

 當(dāng)mA=
3
5
mB
時(shí),h=
12mB
(
3
5
mB+12)(mB+5)
=
20mB
(mB+20)( mB+5)

h=
20×
3
5
mB
(
3
5
mB+3)(mB+20)  
=
20mB
(mB+5)(mB+20) 
,所以h=h
(2)設(shè)mB=x(其中x>0),當(dāng)mA=
3
5
mB
時(shí),
h=h=
20x
(x+5)(x+20)
=
20
x+
100
x
+25
20
2
x•
100
x
+25
 
=
20
45
=
2
3

當(dāng)且僅當(dāng)x=
100
x
,即x=10時(shí),上式“=”成立,即mB=10,mA=
3
5
×10=6時(shí),
甲、乙兩人的綜合滿意度均最大,最大綜合滿意度為
2
3

(3)不能由(2)知h0=
2
3
.因?yàn)閔h
4
9

因此,不能取到mA,mB的值,使得h≥h0和h≥h0同時(shí)成立,但等號(hào)不同時(shí)成立.?
點(diǎn)評(píng):本題考查函數(shù)模型的選擇和應(yīng)用,本題解題的關(guān)鍵是理解題意,這是最主要的一點(diǎn),題目中所用的知識(shí)點(diǎn)不復(fù)雜,只要注意運(yùn)算就可以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為,則他對(duì)這兩種交易的綜合滿意度為.

 現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為

(1)   求關(guān)于的表達(dá)式;當(dāng)時(shí),求證:=;

(2)   設(shè),當(dāng)分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷)(本小題滿分16分)

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為,則他對(duì)這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為

(1)求關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=

(2)設(shè),當(dāng)分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?

(3)記(2)中最大的綜合滿意度為,試問(wèn)能否適當(dāng)選取、的值,使得同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分16分)

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為,則他對(duì)這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為

(1)求關(guān)于的表達(dá)式;當(dāng)時(shí),求證:=;

(2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少? (3)記(2)中最大的綜合滿意度為,試問(wèn)能否適當(dāng)選取、的值,使得同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省佛山市高二下學(xué)期期末考試(理科)數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為,則他對(duì)這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為.

(1)求關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=;

(2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案