5.已知f(x)是定義在(-∞,1)∪(1,+∞)上的可導(dǎo)函數(shù),且f(x)=f′(2)x2+xf(x)+x,則f(x)的解析式為f(x)=$\frac{{x}^{2}+x}{1-x}$,(x≠1).

分析 由f(x)=f′(2)x2+xf(x)+x,令x=2,可得:4f′(2)+f(2)+2=0.對f(x)=f′(2)x2+xf(x)+x,兩邊求導(dǎo)可得:f′(x)=2xf′(2)+f(x)+xf′(x)+1,令x=2,可得5f′(2)+f(2)+1=0,聯(lián)立解得f′(2).代入即可得出.

解答 解:∵f(x)=f′(2)x2+xf(x)+x,
令x=2,則f(2)=4f′(2)+2f(2)+2,化為:4f′(2)+f(2)+2=0.
對f(x)=f′(2)x2+xf(x)+x,兩邊求導(dǎo)可得:f′(x)=2xf′(2)+f(x)+xf′(x)+1,
令x=2,則f′(2)=4f′(2)+f(2)+2f′(2)+1,即5f′(2)+f(2)+1=0,
聯(lián)立解得f′(2)=1.
∴f(x)=x2+xf(x)+x,
∵x≠1,解得f(x)=$\frac{{x}^{2}+x}{1-x}$.
故答案為:f(x)=$\frac{{x}^{2}+x}{1-x}$,(x≠1).

點評 本題考查了導(dǎo)數(shù)的運算法則、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow$|=|2$\overrightarrow{a}$+$\overrightarrow$|=1,則|$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=\sqrt{x}$的反函數(shù)是f-1(x)=x2(x≥0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C的中心為坐標原點,F(xiàn)是該橢圓在y軸的正半軸上的一個焦點,其短軸長為$2\sqrt{2}$,離心率為$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F分別作斜率為k1,k2的直線交橢圓C,得到弦AB,CD它們的中點分別是M,N,當(dāng)k1k2=1時,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+$\frac{1-x}{ax}$,其中a為大于零的常數(shù)..
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對于任意的n∈N*,且n>1時,都有l(wèi)nn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.長方體ABCD-A1B1C1D1中,AB=1,BC=2,AA1=3,點M是BC中點,點P∈AC1,Q∈MD,則|PQ|長度最小值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{7a}{x}$,a∈R.
(1)若函數(shù)y=f(x)在其定義域內(nèi)有且只有一個零點,求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)在[e,e2]上的最小值為3,求實數(shù)a的值.(e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\sqrt{2}$(sin2ωxcos$\frac{π}{4}$+cos2ωx•sin$\frac{π}{4}$)(ω>0),且f(x)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,且α、β∈(-$\frac{π}{2}$,$\frac{π}{2}$),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=ax3-2ax2+(a+1)x-log2(a2-1)不存在極值點,則實數(shù)a的取值范圍是( 。
A.(-∞,-1)B.(1,+∞)C.(1,4]D.(1,3]

查看答案和解析>>

同步練習(xí)冊答案