如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,EBD的中點,GPD的中點,△DAB≌△DCBEAEBAB=1,PA,連接CE并延長交ADF.

(1)求證:AD⊥平面CFG
(2)求平面BCP與平面DCP的夾角的余弦值.

(1)見解析(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如右圖,在棱長為a的正方體ABCDA1B1C1D1中,G為△BC1D的重心,

(1)試證:A1、G、C三點共線;
(2)試證:A1C⊥平面BC1D;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在矩形ABCD中,AB=3,AD=6,BD是對角線,過點A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點D到點P的位置,且PB=.

(1)求證:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,平面底面,的中點.

(1)求證://平面;
(2)求與平面BDE所成角的余弦值;
(3)線段PC上是否存在一點M,使得AM⊥平面PBD,如果存在,求出PM的長度;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCDA1B1C1D1中,側(cè)棱A1A⊥底面ABCD,ABDCABAD,ADCD=1,AA1AB=2,E為棱AA1的中點.

(1)證明B1C1CE
(2)求二面角B1CEC1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點.

(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD為正方形,為等腰直角三角形,,且

(1)證明:平面平面
(2)求直線EC與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在長方體中,點為棱上任意一點,,.

(Ⅰ)求證:平面平面
(Ⅱ)若點為棱的中點,點為棱的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,BC⊥側(cè)面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分別為AA1、A1C的中點.

(1)求證:A1C⊥平面ABC;(2)求平面BDE與平面ABC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案