分析 設(shè)橢圓的標(biāo)準方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).由方程2x2-3x+1=0,解得x,由離心率是方程2x2-3x+1=0的一個根,可得$\frac{c}{a}$=$\frac{1}{2}$,又2c=4,a2=b2+c2,聯(lián)立解出即可得出.
解答 解:設(shè)橢圓的標(biāo)準方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).
由方程2x2-3x+1=0,解得x=1或$\frac{1}{2}$,
由離心率是方程2x2-3x+1=0的一個根,∴$\frac{c}{a}$=$\frac{1}{2}$,
又2c=4,a2=b2+c2,聯(lián)立解得c=2,a=4,b2=12.
∴橢圓的標(biāo)準方程為:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}$=1.
故答案為:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}$=1.
點評 本題考查了橢圓的標(biāo)準方程及其性質(zhì)、一元二次方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}{\vec e_1}-\frac{1}{3}{\vec e_2}$ | B. | $\frac{2}{3}{\vec e_1}+\frac{4}{3}{\vec e_2}$ | C. | $\frac{1}{3}{\vec e_1}+\frac{2}{3}{\vec e_2}$ | D. | $\frac{2}{3}{\vec e_1}+\frac{1}{3}{\vec e_2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com