6.等比數(shù)列{an}中,若a20=1,則a1a2…an=a1a2…a39-n(n<39且n∈N*),類比上述性質(zhì),在等差數(shù)列{bn}中,若b20=0,則有b1+b2+…+bn=b1+b2+…+b39-n(n<39,n∈N*).

分析 根據(jù)等差數(shù)列與等比數(shù)列通項(xiàng)的性質(zhì),結(jié)合類比的方法:和類比積,加類比乘,根據(jù)類比規(guī)律得出結(jié)論即可.

解答 解:在等比數(shù)列中,若a20=1,則a40-na41-n…an=1,
利用的是等比的性質(zhì),若m+n=40,則a40-n•an=a20•a20=1,
所以a1a2…an=a1a2…a39-n(n<39且n∈N*).
類比,在等差數(shù)列{bn}中,若b20=0,
則有等式b1+b2+…+bn=b1+b2+…+b39-n(n<39,n∈N*)成立,
利用的是等差數(shù)列的性質(zhì),若m+n=40,b40-n+bn=b20+b20=0;
故答案為:b1+b2+…+bn=b1+b2+…+b39-n(n<39,n∈N*).

點(diǎn)評(píng) 本題主要考查了類比推理的方法的運(yùn)用,屬于中檔題,解答此題的關(guān)鍵是掌握好類比推理的方法,以及等差等數(shù)列、等比數(shù)列之間的共性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.焦距為4,離心率是方程2x2-3x+1=0的一個(gè)根,且焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{12}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC所在平面內(nèi)有一動(dòng)點(diǎn)P,令$\overrightarrow{PA}$2+$\overrightarrow{PB}$2+$\overrightarrow{PC}$2=T,當(dāng)T取得最小值時(shí)P為△ABC的( 。
A.垂心B.重心C.外心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)是奇函數(shù)的是(  )
A.y=lnxB.y=x3,x∈(-1,1]C.y=x${\;}^{\frac{1}{2}}}$D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=2cos2x+1的周期是( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(x>0)}\\{-{x}^{2}-2x,(x≤0)}\end{array}\right.$,若函數(shù)g(x)=f(x)-m恰有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.[0,1]B.(-∞,0)∪(1,+∞)C.(-∞,0]∪(1,+∞)D.(-∞,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定積分${∫}_{0}^{1}$(x+1)dx的值為(  )
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某校共有高一、高二、高三學(xué)生共有1290人,其中高一480人,高二比高三多30人.為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生96人,則該樣本中的高三學(xué)生人數(shù)為78.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.極坐標(biāo)方程ρ2+2ρcosθ=3化為普通方程是(  )
A.(x-1)2+y2=4B.x2+(y-1)2=4C.(x+1)2+y2=4D.x2+(y+1)2=4

查看答案和解析>>

同步練習(xí)冊(cè)答案