設(shè)集合A={x,y,x+y},且A=B,求實數(shù)x、y的值.

答案:略
解析:

首先由元素的互異性和xy0,即x0,y0,只有xy=0于是有

()()

先解():解②得x=1,或x=0(舍去),把x=1代入①得y=1也適合③,故()的解為;

再解():由④得x=0(舍去)y=1,把y=1代入①得x=1.故()的解為于是為所求.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)集合A={(x,y)|
y2
a2
-x2=1,a>1}
,B={(x,y)|y=tx,t>
2a
,t≠1}
,則A∩B的子集的個數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x,y|y=ax+1},B={x,y|y=|x|},若A∩B的子集恰有2個,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在R上,對于任意實數(shù)m、n,恒有f(m+n)=f(m)?f(n),且當(dāng)x>0時,0<f(x)<1.
(1)求證:f(0)=1,且當(dāng)x<0時,f(x)>1;
(2)設(shè)集合A={(x,y)|f(x2)?f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)集合A={x,y|y=
4-x2
},B={x,y|y=k(x-b)+1},若對任意0≤k≤1都有A∩B≠∅,則實數(shù)b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={(x,y)|x2-
y2
36
=1},B={(x,y)|y=3x}
,則A∩B的子集的個數(shù)是(  )
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊答案