【題目】如圖,正方形ABCD的邊長(zhǎng)為2,OAD的中點(diǎn),射線OPOA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記OP所經(jīng)過(guò)的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對(duì)于函數(shù)有以下三個(gè)結(jié)論:

;

②任意,都有

③任意,都有.

其中正確結(jié)論的序號(hào)是__________. (把所有正確結(jié)論的序號(hào)都填上).

【答案】①②

【解析】試題分析::如圖,當(dāng)時(shí), 相交于點(diǎn),,則,

,∴①正確;:由于對(duì)稱性, 恰好是正方形的面積,

∴②正確;:顯然是增函數(shù),,∴③錯(cuò)誤.

考點(diǎn):函數(shù)性質(zhì)的運(yùn)用.

型】填空
結(jié)束】
17

【題目】化簡(jiǎn)

1

2

【答案】(1) ;(2) .

【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1

(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為

試題解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx(a為實(shí)常數(shù))
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤()、().兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為、、.用這兩個(gè)轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無(wú)效,重新開(kāi)始),記轉(zhuǎn)盤()指針?biāo)鶎?duì)的數(shù)為,轉(zhuǎn)盤()指針?biāo)鶎?duì)的數(shù)為,(、),求下列概率:

(1);

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問(wèn)如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與軸的交點(diǎn)中相鄰兩個(gè)交點(diǎn)的距離是,當(dāng)時(shí)取得最小值

(1)求函數(shù)的解析式;

(2)求函數(shù)在區(qū)間的最大值和最小值;

(3)若函數(shù)的零點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的各項(xiàng)均為正數(shù),且bn 的等比中項(xiàng),求bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,且.

(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)若記為滿足不等式的正整數(shù)的個(gè)數(shù),設(shè),求數(shù)列的最大項(xiàng)與最小項(xiàng)的值.

【答案】(1)見(jiàn)解析;(2)最大項(xiàng)為,最小項(xiàng)為.

【解析】試題分析:(Ⅰ)對(duì)兩邊取倒數(shù),移項(xiàng)即可得出,故而數(shù)列為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出,從而可得出;(Ⅱ)根據(jù)不等式,,得,又,從而,當(dāng)為奇數(shù)時(shí),單調(diào)遞減,;當(dāng)為偶數(shù)時(shí)單調(diào)遞增,綜上的最大項(xiàng)為,最小項(xiàng)為.

試題解析:(Ⅰ)由于,,則

,則,即為常數(shù)

,∴數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列

從而,.

(Ⅱ),,

,從而

當(dāng)為奇數(shù)時(shí),,單調(diào)遞減;

當(dāng)為偶數(shù)時(shí),,單調(diào)遞增,

綜上的最大項(xiàng)為,最小項(xiàng)為.

型】解答
結(jié)束】
22

【題目】已知向量 ,若函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減.

(Ⅰ)求的解析式;

(Ⅱ)若關(guān)于的方程有實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案