【題目】已知函數(shù)f(x)=x2+alnx(a為實常數(shù))
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.
【答案】【解答】解:(Ⅰ)當(dāng)a=﹣2時,f(x)=x2﹣2lnx,x∈(0,+∞),
則f′(x)=2x﹣ = (x>0)
由于f′(x)>0在(0,+∞)上恒成立,
故函數(shù)在(1,+∞)上是增函數(shù);
(Ⅱ)f′(x)=2x+ = (x>0),
當(dāng)x∈[1,e]時,2x2+a∈[a+2,a+2e2].
①若a≥﹣2,f′(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時,f′(x)=0),
故函數(shù)f(x)在[1,e]上是增函數(shù),此時[f(x)]min=f(1)=1.
②若﹣2e2<a<﹣2,當(dāng)x= 時,f′(x)=0;
當(dāng)1≤x< 時,f′(x)<0,此時f(x)是減函數(shù);
當(dāng) <x≤e時,f′(x)>0,此時f(x)是增函數(shù).
故[f(x)]min=f( )= ln(﹣ )﹣ .
③若a≤﹣2e2,f'(x)在[1,e]上非正(僅當(dāng)a=﹣2e2,x=e時,f'(x)=0),
故函數(shù)f(x)在[1,e]上是減函數(shù),此時[f(x)]min=f(e)=a+e2.
綜上可知,當(dāng)a≥﹣2時,f(x)的最小值為1,相應(yīng)的x值為1;
當(dāng)﹣2e2<a<﹣2時,f(x)的最小值為 ln(﹣ )﹣ ,相應(yīng)的x值為 ;
當(dāng)a≤﹣2e2時,f(x)的最小值為a+e2,相應(yīng)的x值為e.
(Ⅲ)不等式f(x)≤(a+2)x,可化為a(x﹣lnx)≥x2﹣2x.
∵x∈[1,e],∴l(xiāng)nx≤1≤x且等號不能同時取,所以lnx<x,即x﹣lnx>0,
因而 (x∈[1,e])
令 (x∈[1,e]),則 ,
當(dāng)x∈[1,e]時,x﹣1≥0,lnx≤1,x+2﹣2lnx>0,
從而g′(x)≥0(僅當(dāng)x=1時取等號),所以g(x)在[1,e]上為增函數(shù),
故g(x)的最小值為g(1)=﹣1,所以a的取值范圍是[﹣1,+∞).
【解析】(Ⅰ)利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性,導(dǎo)數(shù)大于0,函數(shù)單調(diào)遞增。
(Ⅱ)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,最值情況。注意分3種情況①若a≥﹣2②若﹣2e2<a<﹣2③若a≤﹣2e2。
(Ⅲ)不等式f(x)≤(a+2)x成立,可化為成立問題。再利用導(dǎo)數(shù)研究其單調(diào)性,即可求出。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移 個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線x2=4y的焦點F的直線l與拋物線相交于A、B兩點.
(1)設(shè)拋物線在A、B處的切線的交點為M,若點M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線l與橢圓 + =1的交點為C,D,問是否存在這樣的直線l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到110km/h時,可能發(fā)生的交通事故次數(shù).
(附:b=,=-,其中,為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項公式;
(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國加入WTO時,根據(jù)達(dá)成的協(xié)議,某產(chǎn)品的市場供應(yīng)量P與市場價格x的關(guān)系近似滿足P(x)=2(1-kt)(x-b)2(其中t為關(guān)銳的稅率,且t∈[0, ),x為市場價格,b、k為正常數(shù)).當(dāng)t=時的市場供應(yīng)量曲線如圖所示.
(1)根據(jù)圖象求b、k的值;
(2)記市場需求量為Q,它近似滿足Q(x)=,當(dāng)P=Q時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,且.
(1)求數(shù)列,的通項公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式 對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記為OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個結(jié)論:
①;
②任意,都有;
③任意且,都有.
其中正確結(jié)論的序號是__________. (把所有正確結(jié)論的序號都填上).
【答案】①②
【解析】試題分析:①:如圖,當(dāng)時, 與相交于點,∵,則,
∴,∴①正確;②:由于對稱性, 恰好是正方形的面積,
∴,∴②正確;③:顯然是增函數(shù),∴,∴③錯誤.
考點:函數(shù)性質(zhì)的運用.
【題型】填空題
【結(jié)束】
17
【題目】化簡
(1)
(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com