如圖,已知長(zhǎng)方體
直線與平面所成的角為,垂直
,的中點(diǎn).
(1)求異面直線所成的角;
(2)求平面與平面所成的二面角;
(3)求點(diǎn)到平面的距離.
(1)(2)(3)
在長(zhǎng)方體中,以所在的直線為軸,以所在的直線為軸,所在的直線為軸建立如圖示空間直角坐標(biāo)系
由已知可得
平面,從而與平面所成的角為,又,從而易得
(I)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/201408231332463951003.gif" style="vertical-align:middle;" />所以=
易知異面直線所成的角為。。。。。。。。。。。。。。。。。。。。。4分
(II)易知平面的一個(gè)法向量設(shè)是平面的一個(gè)法向量,
所以即平面與平面所成的二面角的大小(銳角)為 
(III)點(diǎn)到平面的距離,即在平面的法向量上的投影的絕對(duì)值,
所以距離=所以點(diǎn)到平面的距離為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=,EF=EC=1,
⑴求證:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平行六面體的底面ABCD是菱形,且,(1)證明:;

(II)假定CD=2,,記面為α,面CBD為β,求二面角α -BD -β的平面角的余弦值;
(III)當(dāng)的值為多少時(shí),能使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三棱錐P—ABC中,PC⊥底面ABC,AB=BC,

D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(1)求證:AP⊥平面BDE;                
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐
P—ABC所成兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,
M為AP的中點(diǎn).
(Ⅰ)求證:DM∥平面PCB;                      
(Ⅱ)求直線AD與PB所成角;
(Ⅲ)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,平面,上的點(diǎn).

(Ⅰ)求證:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在五棱錐P-ABCDE中,PA=AB=AE=2aPB=PE=a,BC=DE=a,
∠EAB=∠ABC=∠DEA=90°.
(1)求證:PA⊥平面ABCDE
(2)若G為PE中點(diǎn),求證:平面PDE
(3)求二面角A-PD-E的正弦值;
(4)求點(diǎn)C到平面PDE的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中錯(cuò)誤的是(        ).
A.如果平面⊥平面,那么內(nèi)所有直線都垂直于平面
B.如果平面⊥平面,那么內(nèi)一定存在直線平行于平面
C.如果平面不垂直于平面,那么內(nèi)一定不存在直線垂直于平面
D.如果平面⊥平面,平面⊥平面,,那么平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在底面是直角梯形的四棱錐中,AD∥BC,∠ABC=90°,且,又PA⊥平面ABCD,AD=3AB=3PA=3a。
(I)求二面角P—CD—A的正切值;
(II)求點(diǎn)A到平面PBC的距離。

查看答案和解析>>

同步練習(xí)冊(cè)答案