(本小題滿分12分)
設(shè)是實數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,在上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意 恒成立,求實數(shù)的取值范圍。
(1) m="1"
(2)根據(jù)函數(shù)單調(diào)性,結(jié)合定義設(shè)出變量,結(jié)合作差法得到,變形得到證明。
(3)
解析試題分析:解:(1)∵,且
∴(注:通過求也同樣給分) 3分
(2)證明:設(shè),則
==
,
即,所以在R上為增函數(shù)。 3分
(3)因為為奇函數(shù)且在R上為增函數(shù),
由得
即對任意恒成立。
令,問題等價于對任意恒成立。
令,其對稱軸。
當即時,,符合題意 6分
考點:函數(shù)的性質(zhì)的運用
點評:解決的關(guān)鍵是理解奇函數(shù)在x=0處函數(shù)值為零,同時能結(jié)合函數(shù)定義來證明函數(shù)單調(diào)性,確定結(jié)論,屬于基礎(chǔ)題。
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分) 已知為實數(shù),,
(1)若,求的單調(diào)區(qū)間;
(2)若,求在[-2,2] 上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題共10分)
已知函數(shù)
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方(沒有公共點),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分7分)
已知函數(shù)
(Ⅰ)當時,求函數(shù)的定義域;
(Ⅱ)當函數(shù)的定義域為R時,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)在上為增函數(shù),求正實數(shù)的取值范圍;
(2)當時,求在上的最大值和最小值;
(3) 當時,求證:對大于1的任意正整數(shù),都有。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)
已知函數(shù).
(1) 若不等式的解集為,求實數(shù)的值;
(2) 在(1)的條件下,使能成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com