12.已知等腰△ABC中,∠C=90°,A(-1,0),B(3,2),則點(diǎn)C的坐標(biāo)為( 。
A.(3,-3)B.(0,3)或(3,-3)C.(2,-1)D.(0,3)或(2,-1)

分析 畫出平面直角坐標(biāo)系,表示出AB位置,利用已知條件判斷選項(xiàng)即可.

解答 解:如圖,等腰△ABC中,∠C=90°,A(-1,0),B(3,2),C的位置有兩個,由圖形可知選項(xiàng)D正確.
故選:D.

點(diǎn)評 本題考查了等腰三角形的判定,得到坐標(biāo)的求法,可以利用向量的數(shù)量積求解,也可以利用直線的垂直關(guān)系以及距離公式求解,本題是選擇題,利用數(shù)形結(jié)合方便快捷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知整數(shù)x,y滿足不等式$\left\{\begin{array}{l}y≥x\\ x+y≥4\\ x-2y+8≥0\end{array}\right.$,則2x+y的最大值是24;x2+y2的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.cos45°cos(-15°)+sin225°sin195°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知θ是第一象限的角,若sin4θ+cos4θ=$\frac{5}{9}$,則sin2θ等于( 。
A.$\frac{4}{3}$B.$-\frac{2}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)y=f(x+1)-1(x∈R)是奇函數(shù),則f(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{2}}{{a}_{1}-{a}_{3}}$=( 。
A.1B.2C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化簡:$\frac{{sin}^{2}(α-π)cos(π+α)sin(\frac{3π}{2}-α)}{tan(2π+α{)cos}^{3}(α-π)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101;
(Ⅱ)求數(shù)列{bn}的前1000項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)M(1,0),A,B是橢圓$\frac{{x}^{2}}{4}$+y2=1上的動點(diǎn),且$\overrightarrow{MA}•\overrightarrow{MB}$=0,則$\overrightarrow{MA}•\overrightarrow{BA}$的取值范圍是[$\frac{2}{3}$,9].

查看答案和解析>>

同步練習(xí)冊答案