A. | $\frac{5}{2}$ | B. | $-\frac{5}{2}$ | C. | 20 | D. | -15 |
分析 先根據(jù)定積分的幾何意義求出a的值,再再由二項(xiàng)式展開(kāi)式的通項(xiàng)公式,令x的次數(shù)為0,即可求得.
解答 解:$a=\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}dx$表示以原點(diǎn)為圓心,以1為半徑的圓的面積的二分之一,
故$a=\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}dx$=$\frac{π}{2}$,
則${({\frac{a}{π}x-\frac{1}{x}})^6}$=($\frac{x}{2}$-$\frac{1}{x}$)6,
其通項(xiàng)公式為C6k($\frac{x}{2}$)6-k•(-$\frac{1}{x}$)k=C6k($\frac{1}{2}$)6-k•(-1)kx6-2k,
令6-2k=0,即k=3,
故常數(shù)項(xiàng)為C63($\frac{1}{2}$)6-3•(-1)3=-$\frac{5}{2}$,
故選:B.
點(diǎn)評(píng) 本題考查定積分的運(yùn)算,考查二項(xiàng)式定理的運(yùn)用求特定項(xiàng),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 47 | B. | 48 | C. | 51 | D. | 54 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,4) | B. | [2,+∞) | C. | [2,4] | D. | (2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $1+\sqrt{2}$ | B. | $1-\sqrt{2}$ | C. | $3+2\sqrt{2}$ | D. | $3-2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | S6 | B. | S7 | C. | S8 | D. | S15 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com