11.某中學領導采用系統(tǒng)抽樣方法,從該校某年級全體1200名學生中抽取80名學生做視力檢查.現(xiàn)將1200名學生從1到1200進行編號,在1~15中隨機抽取一個數(shù),如果抽到的是6,則從46~60這15個數(shù)中應抽取的數(shù)是(  )
A.47B.48C.51D.54

分析 根據(jù)系統(tǒng)抽樣的定義進行求解即可.

解答 解:因為采取系統(tǒng)抽樣,每15人隨機抽取一個人,在1~15中隨機抽取一個數(shù),如果抽到的是6,
所以在k組抽到的是6+15(k-1),
所以46~60這15個數(shù)中應抽取的數(shù)是6+15×3=51
故選:C.

點評 本題主要考查系統(tǒng)抽樣的應用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.袋子中裝有大小相同的6個小球,2紅1黑3白,現(xiàn)從中有放回的隨機摸球2此,每次摸出1個小球,則2次摸球顏色不同的概率是(  )
A.$\frac{5}{9}$B.$\frac{2}{3}$C.$\frac{11}{18}$D.$\frac{13}{18}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知m∈R,函數(shù)f(x)=-x2+(3-2m)x+2+m.
(1)若0<m≤$\frac{1}{2}$,求|f(x)|在[-1,1]上的最大值g(m);
(2)對任意的m∈(0,1],若f(x)在[0,m]上的最大值為h(m),求h(m)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若正實數(shù)x.y滿足$\frac{1}{2x}+\frac{1}{4y}+\frac{1}{xy}$=1,且不等式xy+$\frac{1}{2}$a2x+a2y+a-17≥0恒成立,則a的范圍是(-∞,-3]∪[$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線l1:3x-y+1=0,直線l2過點(1,0),且它的傾斜角是l1的傾斜角的2倍,則直線l2的方程為(  )
A.y=6x+1B.y=6(x-1)C.y=$\frac{3}{4}$(x-1)D.y=-$\frac{3}{4}$(x-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.計算下列各式中x的值.
(1)log381=x.
(2)log8x=2.
(3)logx2=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.數(shù)列{an}中,已知an=(-1)nn+a(a為常數(shù)),且a1+a4=3a2,則數(shù)列{an}的前100項和S100=-250.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若$a=\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}dx$,則${({\frac{a}{π}x-\frac{1}{x}})^6}$的展開式中的常數(shù)項( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.20D.-15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知|$\overrightarrow{a}$|=2與|$\overrightarrow$|=4,在下列條件下求$\overrightarrow{a}$•$\overrightarrow$:
(1)$\overrightarrow{a}$∥$\overrightarrow$;
(2)$\overrightarrow{a}$⊥$\overrightarrow$.

查看答案和解析>>

同步練習冊答案