已知向量
a
b
,
c
滿足|
a
|=|
b
|=2,|
c
|=1,(
c
-
a
)(
c
-
b
)=0,則
a
b
的取值范圍是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:由條件化簡(jiǎn)向量等式,注意運(yùn)用向量的平方即為模的平方和向量的數(shù)量積的定義和性質(zhì),轉(zhuǎn)化為不等式,解得即可得到范圍.
解答: 解:由于|
a
|=|
b
|=2,|
c
|=1,
則(
c
-
a
)(
c
-
b
)=0,
即為
c
2
-(
a
+
b
c
+
a
b
=0,
即有
a
b
=(
a
+
b
c
-1=|
a
+
b
|•|
c
|•cos<
a
+
b
,
c
>-1≤|
a
+
b
|-1=
a
2
+
b
2
+2
a
b
-1=
8+2
a
b
-1,
即有(1+
a
b
2≤8+2
a
b
,
即為(
a
b
2≤7,
解得,-
7
a
b
7

故答案為:[-
7
7
].
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的定義和性質(zhì),考查向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是第四象限角,且sinα=-
4
5
,則tan2α的值為( 。
A、-
4
3
B、-
24
7
C、
24
7
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(-2x+
π
6
)
求:
(1)函數(shù)的最小正周期;
(2)函數(shù)的單調(diào)增區(qū)間;
(3)若-
π
3
≤x≤
π
6
,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(0,4)作直線,使它與拋物線y2=4x僅有一個(gè)公共點(diǎn),這樣的直線有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校50名學(xué)生參加2013年全國(guó)數(shù)學(xué)聯(lián)賽初賽,成績(jī)?nèi)拷橛?0分到140分之間.將成績(jī)結(jié)果按如下方式分成五組:第一組[90,100),第二組[100,110),第五組[130,140].按上述分組方法得到的頻率分布直方圖如圖所示.
(1)若成績(jī)大于或等于100分且小于120分認(rèn)為是良好的,求該校參賽學(xué)生在這次數(shù)學(xué)聯(lián)賽中成績(jī)良好的人數(shù);
(2)若從第一、五組中共隨機(jī)取出兩個(gè)成績(jī),求這兩個(gè)成績(jī)差的絕對(duì)值大于30分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+x2+|x-a|.(a是常數(shù),且a≤
1
3

(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)-2≤x≤1時(shí),f(x)的最小值為g(a),求證:對(duì)任意x∈[-2,1],f(x)≤g(a)+9成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|x-3|-logax+1無(wú)零點(diǎn),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈R,則“x•y>0”是“x>0且y>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線的實(shí)軸長(zhǎng)與虛軸長(zhǎng)之和等于其焦距的
2
倍,且一個(gè)頂點(diǎn)的坐標(biāo)為(0,2),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A、
x2
4
-
y2
4
=1
B、
y2
4
-
x2
4
=1
C、
y2
4
-
x2
8
=1
D、
x2
8
-
y2
4
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案