16.在($\frac{\sqrt{x}}$+$\frac{\root{3}{x}}$)18的展開(kāi)式中,第10項(xiàng)是中間項(xiàng),中間項(xiàng)是${C}_{18}^{9}$•${x}^{\frac{3}{2}}$.

分析 二項(xiàng)展開(kāi)式共有19項(xiàng),可得中間項(xiàng)為第10項(xiàng),在二項(xiàng)式的通項(xiàng)公式中,令r=9,即可求得中間項(xiàng).

解答 解:在($\frac{\sqrt{x}}$+$\frac{\root{3}{x}}$)18的展開(kāi)式中,共有19項(xiàng),第10項(xiàng)為中間項(xiàng),
由于通項(xiàng)公式為:Tr+1=${C}_{18}^{r}$•${(\frac{1})}^{18-r}$•br•${(\sqrt{x})}^{18-r}$•${(\frac{1}{\root{3}{x}})}^{r}$=${C}_{18}^{r}$•b2r-18•${x}^{9-\frac{5r}{6}}$,
令r=9,可得T10=${C}_{18}^{9}$•${x}^{\frac{3}{2}}$,
故答案為:10;  ${C}_{18}^{9}$•${x}^{\frac{3}{2}}$.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某襯衫進(jìn)價(jià)為每件80元,零售價(jià)為每件100元,現(xiàn)每買一件送禮品一份進(jìn)行促銷,若禮品為1元時(shí)銷售量增加10%;若禮品為2元時(shí),銷售量比禮品為1元時(shí)又增加10%;若禮品為3元時(shí),銷售量比禮品為2元時(shí)再增加10%;…,以此類推.(1)試寫出禮品為n元時(shí)(n≤20),盈利值f(n)的解析式;
(2)當(dāng)禮品為多少元時(shí)盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.經(jīng)市場(chǎng)調(diào)查,某商品每噸的價(jià)格為x(1<x<14)百元時(shí),該商品的月供給量為y1萬(wàn)噸,y1=ax+$\frac{7}{2}$a2-a(a>0);月需求量為y2萬(wàn)噸,y2=-$\frac{1}{224}$x2-$\frac{1}{112}$x+1.當(dāng)該商品的需求量大于供給量時(shí),銷售量等于供給量;當(dāng)該商品的需求量不大于供給量時(shí),銷售量等于需求量.該商品的月銷售額等于月銷售量與價(jià)格的乘積.
(1)若a=$\frac{1}{7}$,問(wèn)商品的價(jià)格為多少時(shí),該商品的月銷售額最大?
(2)記需求量與供給量相等時(shí)的價(jià)格為均衡價(jià)格,若該商品的均衡價(jià)格不低于每噸6百元,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.口袋中有9個(gè)白球和10個(gè)黑球,一次取出5個(gè)球,在取出的5個(gè)球都是同一顏色的條件下,求它們都是黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.過(guò)原點(diǎn)的一條直線與雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)交于A,B兩點(diǎn),P為雙曲線上不同于A,B的一個(gè)動(dòng)點(diǎn),且直線PA、PB的斜率之積為3,若拋物線C2:y2=2px(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則該拋物線C2的標(biāo)準(zhǔn)方程為( 。
A.y2=$\frac{16\sqrt{3}}{3}$xB.y2=16xC.y2=$\frac{8\sqrt{3}}{3}$xD.y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知{an}為等差數(shù)列,且a3=-6,a6=0.
(I)求{an}的前n項(xiàng)和Sm
(Ⅱ)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在平面直角坐標(biāo)系中,過(guò)原點(diǎn)O的直線l與曲線y=ex-2交于不同的兩點(diǎn)A、B,分別過(guò)A、B作x軸的垂線,與曲線y=lnx交于點(diǎn)C、D,則直線CD的斜率為(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)有白球與黑球各4個(gè),從中任取4個(gè)放入甲盒,余下的4個(gè)放入乙盒,然后分別在兩盒中各任取1個(gè)球,顏色正好相同,試問(wèn)放入甲盒的4個(gè)球中有幾個(gè)白球的概率最大?并求出此概率值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-\frac{1}{2}y≤1}\\{x-2y+2≥0}\\{x+y≥2}\end{array}\right.$,若有無(wú)窮多個(gè)實(shí)數(shù)對(duì)(x,y),使得目標(biāo)函數(shù)z=mx+y取得最大值,則實(shí)數(shù)m的值是( 。
A.-$\frac{3}{4}$B.-$\frac{1}{2}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案