已知A、B是相互獨(dú)立事件,且P(A)=
1
2
,P(B)=
2
3
,則P(
AB
)=
 
考點(diǎn):相互獨(dú)立事件的概率乘法公式,互斥事件與對立事件
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:本題考查相互獨(dú)立事件的概率乘法公式,可由事件A與事件B相互獨(dú)立,得出結(jié)論.
解答: 解:∵A、B是相互獨(dú)立事件,且P(A)=
1
2
,P(B)=
2
3
,
∴P(
AB
)=(1-
1
2
)(1-
2
3
)=
1
6
,
故答案為:
1
6
點(diǎn)評:本題考查相互獨(dú)立事件的概率乘法公式,正確解答本題,關(guān)鍵是理解“事件A與事件B相互獨(dú)立”的意義
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2mcosx+4m-1,m∈R.
(1)當(dāng)m=
1
2
時,求函數(shù)的最值并求出對應(yīng)的x值;
(2)如果對于區(qū)間(-
π
2
π
2
]上的任意一個x,都有f(x)≤5恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A,B兩點(diǎn).|AF|的最大值是M,|BF|的最小值是m,滿足M•m=
3
4
a2
(1)求該橢圓的離心率;
(2)設(shè)線段AB的中點(diǎn)為G,AB的垂直平分線與x軸和y軸分別交于D,E兩點(diǎn),O是坐標(biāo)原點(diǎn).記△GFD的面積為S1,△OED的面積為S2,求
S1
S2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-a|(x∈R,a∈R).
(Ⅰ)當(dāng)a=2時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)<10對x∈(-1,3)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,命題p:對任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命題q:存在x∈[-1,1],使得m≤ax成立.
(1)若p為真命題,求m的取值范圍;
(2)當(dāng)a=1,若p∧q為假,p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,|AB|=3,|AC|=4,|BC|=5,O為△ABC的內(nèi)心,且
AO
AB
BC
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
的夾角為120°,且|
a
|=4,|
b
|=2,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)對一切實(shí)數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,設(shè)P:當(dāng)0<x<
1
2
時,不等式f(x)+3<2x+a恒成立;Q:當(dāng)x∈[-2,2]時,g(x)=f(x)-ax是單調(diào)函數(shù).如果滿足P成立的a的集合記為A,滿足Q成立的a的集合記為B,求A∩∁RB(R為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x+1)2+sinx
x2+1
,則f(2015)+f(-2015)=
 

查看答案和解析>>

同步練習(xí)冊答案